Last active
December 28, 2015 08:49
-
-
Save dartdog/7473989 to your computer and use it in GitHub Desktop.
Stats models Pandas Airma Sample with questions:
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"http://nbviewer.ipython.org/7473989" | |
] | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"1. Data load/clean" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from IPython.display import HTML\n", | |
"from numpy import nan\n", | |
"from numpy.random import randn\n", | |
"import numpy as np\n", | |
"np.set_printoptions(precision=2)\n", | |
"import pandas as pd\n", | |
"from pandas.core.common import adjoin\n", | |
"from pandas.io.data import DataReader\n", | |
"import pandas.util.testing as tm\n", | |
"tm.N = 10\n", | |
"import statsmodels.api as sm\n", | |
"import matplotlib.pyplot as plt\n", | |
"from matplotlib import cm\n", | |
"import matplotlib as mpl\n", | |
"import scipy.stats as stats\n", | |
"pd.options.display.max_columns=80\n", | |
"from StringIO import StringIO \n", | |
"import requests\n", | |
"from statsmodels.graphics.api import qqplot" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#get the statewide actual data from Sheet 1 parse dates and select just unit sales\n", | |
"act = requests.get('https://docs.google.com/spreadsheet/ccc?key=0Ak_wF7ZGeMmHdFZtQjI1a1hhUWR2UExCa2E4MFhiWWc&output=csv&gid=1')\n", | |
"dataact = act.content\n", | |
"actdf = pd.read_csv(StringIO(dataact),index_col=0,parse_dates=['date'], thousands=',') #converts to numbers\n", | |
"actdf.rename(columns={'Unit Sales': 'Units'}, inplace=True)\n", | |
"actdf=actdf[['Units']]\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"I cribbed most of this code from Jseabold's tsa_arma notebook" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"I'd like this to be a useful basic intro to the use of stats models Arima functions:\n", | |
"The data is real, monthly redidential Real Estate Sales in Alabama, therefore highly seasonal\n", | |
"You can also now see the upward drift as the market recovers with higher highs and higher lows.." | |
] | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"2. data view" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"actdf.plot()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 3, | |
"text": [ | |
"<matplotlib.axes.AxesSubplot at 0x2cccfd0>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEECAYAAADNv0QiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXtcVGX+xz8jkogpF1FQsMgAEcO7uJul4wWvm6mppVtC\nty2rTdtLmVnbb7tAtdVmLdvW4i5aptWamiWaxZhdxCtqYoIKcRsQRQEVBZ3n98fXM3OAuZxz5hxm\n5vC8Xy9eMGfOnPN8mTmf+Z7P8zzfx8AYY+BwOByOLung6QZwOBwORzu4yHM4HI6O4SLP4XA4OoaL\nPIfD4egYLvIcDoejY7jIczgcjo5xKfJHjx7FkCFDrD9BQUFYvnw5ampqkJycjLi4OEycOBFnz561\nviYtLQ2xsbGIj4/H1q1brdv37t2LxMRExMbGYtGiRdpExOFwOBwrBjnj5C0WCyIjI7Fr1y68/fbb\nCAsLw5NPPolXXnkFZ86cQXp6OvLz8zF//nzs3r0b5eXlmDBhAgoLC2EwGJCUlIR33nkHSUlJmDp1\nKh5//HFMnjxZy/g4HA6nXSPLrtm2bRtiYmLQp08fbNy4ESkpKQCAlJQUrF+/HgCwYcMGzJs3D/7+\n/oiOjkZMTAxyc3NhNptRX1+PpKQkAMCCBQusr+FwOByONsgS+TVr1mDevHkAgKqqKoSHhwMAwsPD\nUVVVBQCoqKhAVFSU9TVRUVEoLy9vtT0yMhLl5eVuB8DhcDgcx0gW+cbGRnz++eeYM2dOq+cMBgMM\nBoOqDeNwOByO+3SUuuPmzZsxbNgw9OjRAwBl75WVlYiIiIDZbEbPnj0BUIZeWlpqfV1ZWRmioqIQ\nGRmJsrKyZtsjIyNbnScmJgbHjx9XHBCHw+G0NwYNGoS8vDy7z0nO5D/66COrVQMA06dPR1ZWFgAg\nKysLM2bMsG5fs2YNGhsbUVRUhMLCQiQlJSEiIgLdunVDbm4uGGNYtWqV9TVijh8/DsaY4p+UlBS3\nXu9NP3qJhcfhXT88Du/7cTeWAwcOONRuSZn8+fPnsW3bNrz//vvWbUuWLMHcuXORmZmJ6OhofPzx\nxwCAhIQEzJ07FwkJCejYsSMyMjKsVk5GRgZSU1PR0NCAqVOnajKyJjo6WvVjegq9xMLj8C54HN6H\nlrFIEvkuXbrg1KlTzbaFhoZi27ZtdvdfunQpli5d2mr7sGHDcOjQIQXN5HA4HI4SdDfjNTg42NNN\nUA29xMLj8C54HN6HlrHoTuQHDx7s6Saohl5i4XF4FzwO70PLWGTNeG0LDAYDvKxJHA6njQgNDcWZ\nM2c83QyvJSQkBDU1Na22O9NNLvIcDsdr4Ne/cxz9f5z933Rn15hMJk83QTX0EguPw7vQSxwcaehO\n5DkcDodjg9s1HA7Ha+DXv3O4XcPhcDheyMKFC/Hiiy965Ny6E3k9+Y16iYXH4V3oJY62pEOHDjhx\n4kSzbc8//zzuueceSa//5z//iWXLlgGg/3+fPn1Ub6MjdCfyHA6H0xb4SuVd3Ym80Wj0dBNUQy+x\n8Di8C73E4WnEHrjJZEJUVBTeeOMNhIeHo3fv3vjvf/9rfT41NRXPPvssLly4gClTpqCiogJdu3ZF\nt27dUFlZiV27dmH48OEICgpCREQE/vjHP6rWTt2JPIfD4XiCqqoq1NXVoaKiApmZmXj00UdRW1sL\nwLbmRmBgILKzs9G7d2/U19ejrq4OERERWLRoEZ544gnU1tbixIkTmDt3rmrt0p3I68lv1EssPA7v\nwpfjMBjU+dECf39/PPfcc/Dz88OUKVNw7bXX4ujRo9bnhczf3iiYa665BoWFhTh16hQCAwMxcuRI\n1dqlO5HncDj6hTF1fuTi5+eHpqamZtuamprg7+9vfdy9e3d06GCT1MDAQJw7d07S8TMzM1FQUID+\n/fsjKSkJX3zxhfxGOkB3Iq8nv1EvsfA4vAu9xNGWXHfddSgqKmq2raioSFYdeKGj1l6HbUxMDFav\nXo3q6mo89dRTmD17NhoaGtxqs4DuRJ7D4XDU5s4778SLL76I8vJyWCwWbNu2DZs2bcLs2bMlvV5Y\nwQmgpVNPnz6Nuro66/MffPABqqurAQBBQUEwGAzN7grcQXci78t+Y0v0EguPw7vQSxxtyXPPPYeb\nb74Zt9xyC0JDQ7FkyRKsXr0aCQkJ1n2cDakUOl4BID4+HvPmzUPfvn0RGhoKs9mMLVu24KabbkLX\nrl3xxBNPYM2aNejUqZMqbdddWQOTyaSb21G9xMLj8C68OQ5e1sA5Ssoa6E7kORyO78Kvf+fw2jUc\nDofDaYbuRF5PfqNeYuFxeBd6iYMjDd2JPIfD4XBscE+ew+F4Dfz6dw735DkcDofTDN2JvJ78Rr3E\nwuPwLrw5jpCQEOuYcv7T+ickJET2/1SSyJ89exazZ89G//79kZCQgNzcXNTU1CA5ORlxcXGYOHEi\nzp49a90/LS0NsbGxiI+Px9atW63b9+7di8TERMTGxmLRokWyG8vhcPRNTU2NdXaoq5+cnBzJ+3r7\nj9RYampqZP9PJXnyKSkpGDNmDO677z5cvnwZ58+fx0svvYSwsDA8+eSTeOWVV3DmzBmkp6cjPz8f\n8+fPx+7du1FeXo4JEyagsLAQBoMBSUlJeOedd5CUlISpU6fi8ccfx+TJk5s3iHtyHA6HIwu3PPna\n2lrs2LED9913HwCgY8eOCAoKwsaNG5GSkgKAvgTWr18PANiwYQPmzZsHf39/REdHIyYmBrm5uTCb\nzaivr0dSUhIAYMGCBdbXcDgcDkcbXIp8UVERevTogXvvvRdDhw7Fgw8+iPPnz6Oqqgrh4eEAqOBO\nVVUVAKCiogJRUVHW10dFRaG8vLzV9sjISJSXl6sdj1f7jXLRSyzeEsf+/cBjjyl/vbfE4S48Du9D\ny1g6utrh8uXL2LdvH9555x2MGDECixcvRnp6erN9xMV31CA1NdVawjM4OBiDBw+21toQ/hmOHufl\n5Tl9nj9u+8d5eXle0Z7t24HNm00wmbzr/9PWj73l/eCPW4u7nP1NJhOKi4vhEuYCs9nMoqOjrY93\n7NjBpk6dyuLj45nZbGaMMVZRUcH69evHGGMsLS2NpaWlWfefNGkS27lzJzObzSw+Pt66ffXq1eyh\nhx5qdT4JTeJwFJGaylhEhKdbweGojzPddGnXREREoE+fPigoKAAAbNu2DQMGDMBtt92GrKwsAEBW\nVhZmzJgBAJg+fTrWrFmDxsZGFBUVobCwEElJSYiIiEC3bt2Qm5sLxhhWrVplfQ2HU1cHHD+u7TkO\nHACqqwGLRdvzcDhehZRviby8PDZ8+HA2cOBANnPmTHb27Fl2+vRpNn78eBYbG8uSk5PZmTNnrPu/\n9NJL7MYbb2T9+vVj2dnZ1u179uxhN910E7vxxhvZ73//e9nfSFLIyclx6/XehF5ikRLHO+8wNmmS\ndm1obGSsc2fGunRhrLpa2THa0/vhC+glDsbcj8WZbrr05AFg0KBB2L17d6vt27Zts7v/0qVLsXTp\n0lbbhw0bhkOHDsn6EuK0D/LyKNPWiqNHgT59gA4dgJMngbAw7c7F4XgTvHYNxysYORLYtQuoqgJ6\n9lT/+B9+CGzYQAL/l78AY8eqfw4Ox1Pw2jUcr+bKFeDwYWDIEODgQW3OceAAMHAgfYGcPKnNOTgc\nb0R3It9ySJIvo5dYXMVx7BgQHg7ccot2ls3Bg8CgQe6JvLM49u0Dxo8H/vY3oLRU2fHbivbyufIl\ntIxFdyLP8T0OHCABHjRIO5EXzhEeTpaQFsdvbKQ7knHj1D8+h6MU7slzPM4zzwD+/sC0acADD6gv\n9CdPAv36ATU1wHvvAXv30m+LBdi4EVBjJO+rr9J5Xn2VOnXz84GICPePy+FIgXvyHK9GsFJuugko\nKKCMWE2ELN5gILtGyOQLCoD589U5R3U10KMHjd751a+AH39U57gcjrvoTuS5T+d9uIpDEOHOnYHo\naODIERLgZ55R5/yFhZTJA2TXCJ78kSNAQwPQ1CTtOM7iEEQeAH79a+8W+fbyufIluCfP0S01NcDZ\nsyTuAIn9998DM2cCr70GVFaqcw5hXLy44zU/n37X1rp/Dl8SeU77QnciLxTy0QN6icVZHAcPAomJ\nZHMANMzxj38koZw1C9i0yf3z19QAoaH0t9iuOXKEfksVeWdxiEU+KYkqXqptO6lFe/hc+RpaxqI7\nkef4FoJVIzB2LDB6NPDOO8Dtt1PHqLuIRb5rVxqXf/48ibyfn/qZfLduQN++2s7g5XCkojuR5z6d\n9+Esjp07abarwK9/DWzZAgQEAJMnAyYTCbI7nDljE3lx5+vRo/QFI1XkncVx6pRN5AHvtmzaw+fK\n1+CePEeXMAbs2AGMGmX/+ZAQYMQIwEGJJMnU1NCxBHr2BHbvBoKDgago6hNwh4sXyZrp2tW2zZtF\nntO+4OPkOR7jl18oizebKcO2x1tvkW+fman8PAMGAGvX0hBNAPjNb4DrrqOZthERNHkpNVX58UtL\nadikeKGz48eBYcOAO+8E5swBJkxQfnwOxxV8nDzHK/n+eypl4GxRsdtuc7/zVezJA5TJm0xA//5A\nUJD7nrzYjxe48Uayovr1o0leFy+6dw4ORym6E3nu03kfjuL47jsSeWfccANQX08/SmDMvl1z5AiJ\nfHCw+568PZEHgPh44A9/AK69Fjh3Tn7btULvnytfhHvyHF3y3XeO/XgBgwHo3ZssHSVcuEAjaDp3\ntm27uv68ppm8GG8TeU77Qnciz8fOqk9xMS3qoRR7cZw5AxQVAYMHu359r17KRV48skZAqFefkCBP\n5B29H74m8t7yuXIXvcQB8HHyHA/zzjvAvHnqro364480acjf3/W+7oh8Sz8eIJHv3p2EmWfyHL2j\nO5HnPp367NlDI0c2bFD2entx/PCDa6tGQK7IL19u66xt6ccDNKt28WL6W47IO3o/Tp1yvpygt4m8\nt3yu3EUvcQDck+d4kCtXaEGMN94A0tKoI1MN9uyhMfBSkCvyu3fTlwhgP5MPDweWLaO/g4KUjZO3\nWOh/A/BMnuPd6E7kuU+nLgUFJGD33UcjXL75Rv4xWsbBGNV0HzZM2ut79QIqKqSfr7aW+hEA+yIv\nRqkn/9prti8KXxN5b/hcqYFe4gC4J8/xIELG3aED8MQTwL/+5f4xy8poxEuvXtL2l5vJ19VJF3k5\nQyjFnDxpq6vjayLPaV/oTuS5T6cue/YAw4fT31OmADk58jtgW8YhZPHOJkGJkTuEsq6OZtMC9kfX\niFHqyZ87R6WKS0p8T+S94XOlBnqJA+CePMeD7N5tE/k+fUgUhTrsStm3Dxg6VPr+SjL5igrg0iXX\nmXznzsDly/LLAp8/T6/dtInO5+wc3ibynPaFJJGPjo7GwIEDMWTIECQlJQEAampqkJycjLi4OEyc\nOBFnRb1XaWlpiI2NRXx8PLZu3WrdvnfvXiQmJiI2NhaLFi1SORSC+3TqcfkylcsVC7LRSCUB5NAy\nDrkiHxpKk5oaGqTtX1dHwlpS4lrkDQbp2bw4jnPn6M7mgw/o+B2cXEneJvKe/lyphV7iALzAkzcY\nDDCZTNi/fz927doFAEhPT0dycjIKCgowfvx4pKenAwDy8/Oxdu1a5OfnIzs7G4888oi1cM7ChQuR\nmZmJwsJCFBYWIjs7W6OwOGqQn0+FvLp1s20zGsmycQc5na4ACXFEhPRVourqaCGS4mL7QyhbomSs\n/LlzwB13UH0aZ8MnAe8TeU77QrJd07LC2caNG5GSkgIASElJwfr16wEAGzZswLx58+Dv74/o6GjE\nxMQgNzcXZrMZ9fX11juBBQsWWF+jJtynUw+xHy9gNALbt8vz5cVxmM20pmqfPvLaItWyuXSJ2hYf\nT768q0wekD6MsqUn37cv3ZE48+MB7xN5T3+u1EIvcQBe4MkbDAZMmDABw4cPx/vvvw8AqKqqQvjV\nIiDh4eGourqmWkVFBaKioqyvjYqKQnl5eavtkZGRKBfXZuWogtlsW9bOXfbvB4YMab4tKooy48OH\nlR1TbqergFSRr6ujO4/oaFsm70rklYywOX8e6NKFLBtfE3lO+6KjlJ2+//579OrVC9XV1UhOTkZ8\nfHyz5w0GAwxyr1qNaO8+3ZIl5KV/+KH75//lF2D8+Nbbx44lyyYxUdpxxHHI9eMFpI6wEYv81q2u\nR9cAyj35a68FHnvMdbu8TeT1co3oJQ5A21gkiXyvqwOae/TogZkzZ2LXrl0IDw9HZWUlIiIiYDab\n0fNq1afIyEiUlpZaX1tWVoaoqChERkairKys2fbIyEi750tNTUV0dDQAIDg4GIMHD7b+E4TbGv64\n9eOKCuDDD01Xxdf945WUAFVVJphMzZ+neuxGPP64/ON/840Jt94qv329elF8Uo7foQMQHW1EYSFw\n/rwJe/cCY8c6Pn5DA1BbK689584Zce21wOHD9NhZPAUFtL+c4/PH/LGzx8LfxcKEEGcwF5w/f57V\n1dUxxhg7d+4cu/nmm9mWLVvYn//8Z5aens4YYywtLY099dRTjDHGDh8+zAYNGsQuXbrETpw4wfr2\n7cssFgtjjLGkpCS2c+dOZrFY2JQpU9jmzZtbnU9Ck5ySk5Pj1uu9CbmxPP00Y+PGMdavnzrnDw1l\n7OTJ1tt37WJs+HDpxxHHMWECY1u2yG/Lv//NWGqq6/1MJsZuvZWx4mLGOndmrEcP1695/HHG3nzT\n9X7iOAICGLtwwfVrGGPs4EHGBgyQtm9boJdrRC9xMOZ+LM5002UmX1VVhZkzZwIALl++jN/+9reY\nOHEihg8fjrlz5yIzMxPR0dH4+OOPAQAJCQmYO3cuEhIS0LFjR2RkZFitnIyMDKSmpqKhoQFTp07F\n5MmTXX8LcSRx/jzw3nu0CPbYse4f79w5GrZob+SI0novAJVGEK+FKhW5nnxkJI19d2XVAPJH11y5\nQscOCJC2v7fZNZz2BV/jVSf8619Adjawbh2JSmWlMjEVOHIEuP12ql3TkpMnad3U6mr5x01IAD75\nhF4vh/37aR3WAwec7/fhh8CXX9LvG26goZeuFtR+/XWqsvnGG9LaUldHHdB1ddL2r66mBUpOnZK2\nP4cjF77Gaztg1y4a6SGspCSnoJc9SktpjLw9hExeyXex1pl8ba1tXH90tPRMXs6didDpKhWeyXM8\nie5EXtwx4evIieWXX4Drr6e/1RD5khLHIt+pEy32ceGCtGOJ41Aq8j16kBC7mvUq2DUA/T+kiLzU\nIZS2Tld5Ih8QQHMDmpqkv0ZL9HKN6CUOwAvGyXO8n7YUeYCEUa4vz5hykffzA371K9eljsUif8MN\ntAKUK+R68ufO0Rh5qRgM9KVw/rz013A4aqE7kReGGukBqbFYLGSvqCnypaXOZ6XKEXkhjgsX6C6g\no6SBu62ZORNwNUlaLPKPPgo8+aTr48odJ3/+vLxMHvAuy0Yv14he4gC8oHYNx7uprCSh6tyZHntr\nJq80ixe4/Xaq4S6syGQPsciHhdH/whVKMnlfFnlO+0J3It8efTqxVQN4n8gLcYgFWAl9+7oeLVNX\nR6ItB6kir9STB7xL5PVyjeglDoB78hwXtBT5yEj3RJ4xaXaN3Hov7mbyADBjBvDZZ46fV/JFwjN5\njp7Rnci3R59O7Uy+uppEKTDQ8T5KPPm6OvdFXvDlHQ3fFA+hlEpAAPVruPqfiT15OR2vgHeJvF6u\nEb3EAXBPnuOCliIvLHytdE6ZK6sGUO7Ju2PXAMCgQTTS5q9/pUJsLVGSyRsMwFNPUcG1Z591XUaZ\nZ/IcX0J3It8efbqWIt+lC41iUVp6oKTEdb13OROIhDjUsGsMBqqA+d13wOjRrW0Wpb7/Cy9QhcxV\nq4C8PPv7cE/eu9BLHAD35DkuaCnygHuWjbPZrgJKMnk17BqA+hy2bKG/ry5U1uwcSu8Wrr+exuK7\nqsfv6yLPaV/oTuTbm0/HmPoiX1ysrsgLcahh1wh06EAxi+vnNDaShSMMJVVCQoLjhcqFOOROhgK8\nS+T1co3oJQ6Ae/IcJ5w5Q4IXHNx8uxKRr6gAfvc7Wpza1WfOE+PkWxIW1rzol/Al4s76Nc5EXsDX\nJ0Nx2he6E/n25tPZy+IBZSK/YAF9YRw9CowY4XxfpePk1RZ5cSavZGRNS5yJPPfkvQu9xAFwT55j\nh6efBj79VF2Rr6oCHnlEelEvT4yuEdOjR/NM3t3JVgAQE0Mdz5cuOd7HUyJfVwe8/LJ7x+C0P3Qn\n8u3Fp1u5kqyVf//bscjLXSddjkgq9eS1tGvUEPlrrqHCZvbq6Hvak//pJ+C559w/jl6uEb3EAXBP\nntOCkyep2NeWLcCOHfZFPjoaKCqSd1w5IizMEpUzFl9tu6ZHj+Z2jRoiDzS3bLKzW98RecqTLy+n\nuj2uFkHhcMToTuTbg0+XlwcMHky++e7dwH33td6nXz/KRl1N7BFgTJ4IBwSQf3/xout9xePk1bRr\n7GXycuvW2EMQ+UuXqJ8iJ4e2e9qTLyuj//m337p3HL1cI3qJA+CePKcFeXnAkCH0d1yc/ZrpXbsC\nISE05l0KDQ20EMg110hvh1xf3tcy+c8+o+OfPt38eU+K/LhxwPbt7h2H41t8+KHjCXpS0J3Itwef\nTsjkXREfD/z8s7RzKfHLpYq8FuPkAfpyq6mx3a2oLfL/+hf9LYi82JP3lF0zZw7NzJVyB+UIvVwj\neokDcB5LZibwj3/YHu/eTeskS0V3It8e2L9ffZFXWr1RTiavdservz+Jp9CG06dbzxdQQlwccOwY\nzXxNTaUvEoHGRrK25NzxAOpl8vHxtAh6y5m+HP1y/DjdVQq1mp59liza556T1iemO5HXu093/jwN\nm+zf3/XrvSWTN5lMsj1/qYh9+eJiGhnjLgEB1HF9771U7E3I5E0mk6JOV0C9TD4ykmr2fPst8MMP\n1E65JZ/1co3oJQ7AcSyXLtGiQH36kE1XWkpf8D/9BGzdSoLvCt2JvN756ScSeH9/1/tqncnL8eQv\nXqRl/+RmwK4Q+/InTqgj8gDwl78Ajz9OlpDYk1di1QBUtvnCBekd4S0RSiELIv/hh1Rbv7EROHhQ\n2TE53k9xMQn8XXfRvJiVK4G5c2lEXVoaja5zhcLVNr0Xvft0Uq0aQL7Ia+nJnzypfhYPNM/ki4po\n9Sg1mD+ffpeU2Owao9GII0eUibyfH9XUuXBB2eurq+lLOCAAuOUWyu5WrQI+/5xE/tZbpR9LL9eI\nXuIAHMdy/Dhw443A7NnAzTfTNbR6NT0XHk4TGF2hO5HXO+KRNa6IjKTM8+xZ1161kk5ROZm8FlYN\nYCttUFtLdws9eqh7fHuZvNyJUAKCZaNE5AWrBqBRU9XVdGf0yy/AgQPK2sPxfgSRv/FGev8vXbKV\nHImIkCbykuyaK1euYMiQIbjtttsAADU1NUhOTkZcXBwmTpyIs6IrPS0tDbGxsYiPj8fWrVut2/fu\n3YvExETExsZi0aJFMsKUh959uoMHgYEDpb3eYKDx8kePut5XS7vGZDKpPrJGQChtUFREVo07xcns\nIRZ5dzx5gMR5zx5lry0rA6KibI87Xk3PBg2Sb9fo5RrRSxyA41gEkQeAP/2JbEThMx4SQn10rkZa\nSRL5t956CwkJCTBcPXp6ejqSk5NRUFCA8ePHIz09HQCQn5+PtWvXIj8/H9nZ2XjkkUfArnb/Lly4\nEJmZmSgsLERhYSGys7OlnJrTgtJS6myTSny86/rogPKOV6mdflpn8mpaNWKCguhCamqix0ozcQDI\nyKBREV9+Kf+14kxeTGIi9dNcuaKsTZ6gqYnq9i9fbvu/cuxz/DjVUwLIQpw71/acwUCWzcmTzo/h\nUuTLysrw5Zdf4oEHHrAK9saNG5GSkgIASElJwfr16wEAGzZswLx58+Dv74/o6GjExMQgNzcXZrMZ\n9fX1SEpKAgAsWLDA+hq10bNPZ7HQ7VlEhPRj9O8vzZfXMpM3Go2qD58UEDJ5NTtdxQhlnM+coTjc\nEflx44CNG4GUFGl3V2JaZvICQUH0PzhxQvqxPH2N7NtH79nGjcDQofTZU4Kn41ATV568I8LDqX/G\nGS5F/oknnsBrr72GDh1su1ZVVSE8PPzqScJRddUYqqioQJTokxgVFYXy8vJW2yMjI1Eut3oWBydP\nkuDIGaEitfNVyyGUwvG1sGu0zuSB5paNO548QBnsxIny6884EnmA7Dtf8uVNJmDaNOCrr+jx8eMe\nbY7XYrG4/lxL8eWddrxu2rQJPXv2xJAhQxx6RgaDwWrjqEVqaiqir3oSwcHBGDx4sPWbTmiHo8d/\n//vfZe3vzY/F/3Oj0YiKCqBbNxNMJunHO3PGdFUAnO9fV2dEt27y2hccDJSUuG5PXl4eOndejK5d\n1f9/lZSYrmaxRkyapM370bEjcPo0vR979tAXlqv/p7PHXboAhw7Je315uRGRkfafDwoCDh40YvZs\nacfLy8vD4sWLVfv/yH28bh3w1FNGGAyAwWDC9u3AkCHyj9fy+vBUPGo8bhmT0WhEeTkQGGjCrl32\n9zeZTDh6tBhpaXAOc8LTTz/NoqKiWHR0NIuIiGCBgYHs7rvvZv369WNms5kxxlhFRQXr168fY4yx\ntLQ0lpaWZn39pEmT2M6dO5nZbGbx8fHW7atXr2YPPfSQ3XO6aJJLcnJy3Hq9N9Eyls8/Z2zqVHnH\nqKxkLCzM9X6zZjH28cfyjn3kCGORkfS6nTubP2ex2P7Oyclhr73G2BNPyDu+FI4dYyw6mrF+/Rj7\n6Sf1j88YY9OmMbZhA8XxyCOMLV/u3vG+/JKxCRPkvaZfP8YOH7b/3CefMDZ9uvRjefIaaWpirFs3\nxqqr6fHUqfS5VoKer3Xaxtgttzh/3dNPM/bCC85106ld8/LLL6O0tBRFRUVYs2YNxo0bh1WrVmH6\n9OnIysoCAGRlZWHGjBkAgOnTp2PNmjVobGxEUVERCgsLkZSUhIiICHTr1g25ublgjGHVqlXW16iN\n8I2nB1rG4qjzzRlhYWSpuOrgUmKnXHcdMGECsHYtMGkSDecD6FzC4huAzZPXanTNyZN0bi08ecBm\n1xiNRhQmgCjpAAAgAElEQVQXy+v4tsfAgfJGxDBGdo2j917uCBtPXiP799PnJiyMHnfrxj15wH4s\nrvx4QJpdI2vGq2DLLFmyBF999RXi4uLwzTffYMmSJQCAhIQEzJ07FwkJCZgyZQoyMjKsr8nIyMAD\nDzyA2NhYxMTEYPLkyXJO7VN88on9KeyvvAKsWaP8uBUVtBiIHPz8bEIoYK/TT0nHa2Ag8N//0ky8\ne+4BVqyg7Rs3Ukeg2GvVanRN1670pRIURO3RArEnr4bI9+5NdUhcXZyXL9NErLo6Gknh6P3p29c2\nV0ALLlxQ71gmEzBmjO1x166C/cVpiRSRV6XjVWDMmDHYuHEjACA0NBTbtm1DQUEBtm7dimDRTJul\nS5fi2LFj+PnnnzFp0iTr9mHDhuHQoUM4duwYli9fLvW0shF7Vp7iqaeoroSYN98Eli6VVwu8ZSxK\nRB6gb3uzmf6uqwNuuqn1kDt3R7/87ndULe/yZareGBxM2SdAcZw5o07xsJYYDJQVatXpCtByiDU1\nQE6OSRWRNxikZfOffEKxjRpFna6Our78/GiCnNSiZXKukZoamlavVufo9u3NRd6dTN4brnVHFBXJ\nKyJnLxaPZPIc1zBGgioePbF2LYn83/7m+lvXGUrsGoCKbAnnLS0lIW6Z9blbpjcxkYToH/+gW/KU\nFJvIA2TdXHed8uM7o0cPbUVeyOTPnqXSBGrckUgR+ePHgT/8AXjrLeD1153vO3asbXETNXn9dRJ6\ne8shyuXKFeC771qLvC9n8ocPA+vX08+ZM7btGRk0D8AdDh2ihMwZqmbyvoKnfTphev0PP9i2vfEG\n8P77NB1Zjsi3jMWdTF44ryC84g8koI6d8rvfAX/8Iwn8jTfazmU0GvHLL9qJfFiYdn48YBP5yEij\n21m8gBSRLymhvo3x44GpU53vO24c8M030s4t9Ro5dQp4913qbykulnZsZ+TnAz170o9A166+7ckv\nWAC8/TawbBnw97/btm/f7t61LrXarJT6NboTeU9jNpMQHzhAdSZOn6YZp0aj9FoTjigvd9+uEVaK\nEo9vZ4z6ENwV+TvvpFv73/2OsnphKoTFQoKvlcj36UPzAbRCWJxErVLGAIn8oUPO9ykpodik8Ktf\nUVappi//2mv0no4ZI3+9YHvs3AmMHNl8W1tk8kVF7i2y4oimJrq2N2yguy3Boq2vpwlf7ty15+XR\nugGuqs0GB6tU1sCX8LRPZzZT9hUbS7bF119TadhOnaTdWokRx3LpEl3ASgpwie0ae5n8+fPUvo5u\nlqvr0oUshrg4EnnhXOvWmRAcTFaHFrz7LpVi1YrQUPqy3rbNpFomP2AATVITFoKwR2mp9C/GgAAS\nUCmlZ6VcI4xR38qSJcoWhbdHbi59GYlxJ5OXeq3PmkV3Qy2XcXSXo0fpS/jaa6ky6OHDdF398ANd\n/0qvdYC+JIYOdf06obSBM3Qn8p6mspJE9eabyZffsoVmOAK26fBKFo+orKSMvIOCd0xs1wiZvFjk\n1RzeKLQvMtIm8lVVVP9aKwICqPNRKwS7prLS/U5XgcBAEghHXjdj8vsx5Fg2rqispCzyuuvo7kUN\nuyY3134mr1TkpWCxkBgPG0bXpLifyF3Ey3B26kRC//XXZNXMmkVJmdLaPPv2UZul4KrMie5E3tM+\nndlMIv/rX9M3+pYt5GkC9K0rFlxXiGNRatUAre2ayMjmdo1aa6OKCQ8ni6OxEeje3aipyGuNYNc0\nNRlV9f6HDWs9Ckvg7Fn6wgwKkn48qSIv5RopLKRsFCCRdzeTr6+nYbUtK6i6M4RSShwlJfT+LV8O\n3H033fE5u3uSQ8u1lidOpPfz22+pIzwszHXxMIGWsezdKy2TB3gm3+YIIn/zzcCmTWSBxMXZnpda\n6L8lwqpASmhp1wwc2DyT12IMu58ffblUVEDTTte2IDCQRoYcOaJeJg/QkNqXX7atbCVGyWik4cNJ\njIVFVNzh2DFb9cOePWmsvDve+Z49NGnrmhZ1l7TO5I8csfXXPPMMWYYvvKDOse2J/Bdf0PZf/1pe\nQiemoYH+/65G1gi0O5H3Bk8+IoKyn6AgyuLF45vlvPHiWJSOrAHoQ2A2kwVQWkrDHbWya8QIna8/\n/mjy6UzeYKBs8Jdf1I3jpptoEtnVuYTNUCLyHTuSuLgqfiblGhFn8gYDfbm5Y9ns3Nnajwfcy+Sl\nxPHzzzaR79CBls97773mo9+UwBgNrhg0yLatf3/bHIguXeQNtBDHcugQrQPRqZO017Y7u0YpZWWt\nhxUqQcjkDQZg5kzgjjuaPy+381XAHbvm2mtJAEpKqF3XX9/artFiNqrQ+aq1J98WdO9OIxncqUBp\nj7/8BcjObj1xRum8ghtusPW7uINY5IXjumPZ2PPjAe0z+Z9/bj4MsVcvYNEimmjmDhUVdC316mXb\nZjAAkyfTSDpAeSYvx48H2mEmr9ST//3vgavleNxC6HgFgH/+09bpKiDn210cizt2DUBt2rOHOvuE\n+ugCWmXyQufruXO+7ckDNMImLs6o+nG7dSOfePv25ttLS6UPnxQTGWkbuuoIKdfIsWPNRd6dETaM\nORZ5IZO/ulSFLKTEIc7kBZKSgN275Z9PjGDVtJyF/MYbZAsB8hI6cSxy/HiAZ/KSaGqiXnFhwWZ3\nEDJ5RyjN5N2xawD6IOzeTcIREqK9Jw9QJl9aSp68r4t89+7q+vFi7PXTKM3kpYi8Kxhr7skD7o2w\nKS+nUS72PgP+/vTT0KDs2K4Qe/ICw4aRSLvTAdvSjxfo1s12t6c0k9+/X/o6zkA7zOSlevLff2/7\nYP34I2UTUhfAcERDA3VQhYY63kepT+eOXSOcd9cuEt6QkOaxaunJHz4MNDWZNKlb05Z07w74+Zk0\nObbaIu9qmKCra8Rsps5m8cged+yaykrntXeU+vKu4jh9muaXtEy6goKoPVKWxXTEgQP2RV6M0mu9\npETepDvxHZc9dCfyUli5Erj1VrJTAPJE+/Rx35OvrKQL1tkaKkoyecaU160R6NWLbgMdZfJaiXxu\nLn3Y1V5gu62ZOZNGTGmBt2XyLf14wD27xlXxO618+aNHKYu399kbPly5ZXPxIlXT/PWvne+nJJNv\naqJrU86kR2fOAaBDkXfl061ZQ6MZ/vtfqjlx5QqNZb/zTvczeVdWDaDMk1cyZtreeevq7HvyWtk1\nkZF0gSckGNU/eBszdSrw2GNGTY7dUuQvXyZxUPKlroYn39KPB2x2jdg7f/FFYPVq121ytS6u0tIG\nruKw58cLjBhBfVRKWLOGLB9X2bYST766msbXqzm5T3ci74pHH6WxrAsWkCBnZtJU/ClT3M/kpYi8\n8MbL6WhSo4Kj0DkjtmuENmhl1wj2kq/78VrTUuQrKmhsuqu6JfYICqLExZ0x7fYy+ZAQ+i1cIxkZ\nVHTvT39yXW/eVSbvTmkDZ9jz4wWUZvKMUXL4+9+73ldJJi8MwVYT3Ym8M5+upoayJMFLW7QIeOIJ\nmp3Wo4f7mbx4ZI0jAgNpQoiUD7UQi5waJo4Q2tWnD53/mmuoZg2gXSZ/zTUkYJcvm9Q/uAfQag5G\njx7kHws1/pWOrAHImnCVzbuKw57IGwyUub78Mg37fOEFKm08ahTwzjvO2+Sq+J3STN5VHC2HT4oZ\nMoSqYl66JO+cP/5I14uUNY+E4mFSOpWFWKRoiFx0J/LOOHGC6o4LHt2sWdRJOmkSvSFq2DVSvoXl\n+vJqZ/JAc8vG3QVDnBEV5br3v73j70/vh1BAy90Zwu768oWFzUfWCAhDA2tr6W64b1/gr3+ldRKc\nVb+sr3du13gikw8MpBhdVQJtydtvkxsgpYaUUMZEzgx3nslLwJlPd+JE85VW/P2p1se997bujFSC\nFLsGkH4bJ8SihshHRdHFL4i5ON6yMvWzB4ElS4BHHzVqc/A2Rsu6SGLLpqjIvUVQXIm8szgYI/vS\n3oiNOXNI0P/+d9s47v79yer8xz8cn0+rjldncZw7Z6sI6wglls0XXwC//a30/eVe6zyTd5Pjx1tf\nPLGxNH24SxcqptXYqPz4UkVebv0aOXXFHREWRh1qAoIvf+UKdai5WmZMKbNnq5+Z6BHx3Z1wx6kU\ndzL54mK6q5BzZzd9Oo2icoSrjlct1nk9dIi+gJyVzx4+nGaXSuXiRfoRFiGXgtxrXag2qya6E3ln\nPp2zi8dgcN+ycTeTP3OGOoQF1PTkASrJKyBk8iUl5AlrtQg24Pl6QmqhZRxiMdBa5J3FkZtLM0Ll\nEBPjfA1YrTJ5Z3FIGceemCjPrjl1igReznBgqZm8EAu3a9ykpV3TEndEvqSEvFQpGbFQMGzTJlob\nUmDXLloPtuXIGy3WRxU8+ZYzGzmeoaXIu1PS2J1Mftcu++UHnHHjjdRmi8X+81JG16idyeflNS8e\nZo+bbgJ++slxu1tSXS1/0R65I2y4XSMBsU/HGE0AErBn14hxx5dfuhR47DHbUDNn9OoFvPoqDT8T\nVyDcv5/sIuGLxmg0ujVm2hmCXWNvTLTaeLrGv1q0hSff2Ejvtzv2nDuevKMaM8649loaullRYf95\nKePk1fbkW1aItEdwMA28kDrJS8jk5SCIfGOj8xLQYk+eZ/IyKC2lWWn19fRPNpudZ8RKM/ldu2g4\n2ZNPStt/zhwainX4MF0Ywpsv+INiD89spuxByZhpZwhfaI5GUnDaFkHkS0pIpN15v6WUNrBHUxNl\nwHIqIAo4s2zaOpO3WChDb7lAiT3kWDZKMvnwcOB//6N5D6NGOd+XMW7XSELs09FqPjSC5pdfXF88\nSkX+T3+ioWTOshUxQUHke/r5Uda0cydt37+fPkSCyJtMJlU6Xe0htmu0zuS5J+8aQeTd9eMBEonq\nascFuBzFcegQ2URKJsbdeGPzjn0xWmXyjuI4fpwybin1kuSI/KlT8kV+/HgakXTkCA0zPXHC/n4m\nkwn19aQJUnVEKroTeTFCVcnNm6VdPErsmtpaysBTUxU1EaNG0QIGtbX0LX7LLc09PLU6XVsi2DX2\nJr5w2h41Rd7fn0RO7mxLJVaNQEyMY5Fv60xeih8vIDeTl2vXBAfbZtdPnEglVByhRRYPuBD5ixcv\nYuTIkRg8eDASEhLw9NNPAwBqamqQnJyMuLg4TJw4EWdF6W9aWhpiY2MRHx+PraIFLPfu3YvExETE\nxsZi0aJFThvlyNuTgtinq6mhYVSbN9O3u6tOUSWZvCDCSmtN3HwzifyBA/SB693blskbjUZNOl0B\nEvnTp90fky0F7sm7Rizyaqwj68yXF8fxyy/A4sVkZyoZWSPgjl2jhidfW0sdqT//LM2PFxg4UFu7\nRsykSY5F3mg0atLpCrgQ+YCAAOTk5CAvLw8HDx5ETk4OvvvuO6SnpyM5ORkFBQUYP3480tPTAQD5\n+flYu3Yt8vPzkZ2djUceeQTs6lCRhQsXIjMzE4WFhSgsLER2drbD80ZGUgU5d6mpsflgwgw9ZyjJ\n5N2Zgg5Q5rRnD11gQ4e2niGnlcgHBwMHD2o/fJIjjZ49SURcDQ6QirD0oiv27KFFru+6i/qJtMjk\ntSpQJqa83FaD6uuvXQ+fFOjXj+YGXLzoel8ldo2Y5GSqXtnUZP95LTpdAQl2TeBVBWhsbMSVK1cQ\nEhKCjRs3IiUlBQCQkpKC9VfHAW7YsAHz5s2Dv78/oqOjERMTg9zcXJjNZtTX1yPpapqwYMEC62vs\nkZSkfAmzlp58aCi98Zs3u754lGby7oh8UBC16z//IZEXD6UTPHmtMvmysrbpdOWevGuuuYay3T17\n1BH58HDg5En7z4njqK6mdWabmuizLHXx6JYInnzL4b+MSZsM5a4nX11NHca/+x31cUnN5K+5hq6B\n/HzX+yqxa8T07En/J3tr8JpMJs/YNQBgsVgwePBghIeHY+zYsRgwYACqqqoQfrUgSXh4OKquqlJF\nRQWihOIoAKKiolBeXt5qe2RkJMqdpBkxMeRPucuZMzaRZ0yaXSM3k1ejY/Tmm6ljZsiQ1nVttOp4\nFYZ6cj/eewgPp/dbDZEPDZW20ll1NWX9n34KfPWV8xmizggJob6AlsMEL1wgIXV23K5d6YuAMeDL\nL8lCkouQZS9ZQkspyrG8pPry7mbygHPLRiu7xuVb2qFDB+Tl5aG2thaTJk1CTk5Os+cNBgMMKq8I\nkZeXipMno3H8OBAcHIzBgwdb/Tfh29vRY2Gb0WhETQ1w5YoJiYlAt25G9O3r/PUhIcCJEyaYTI6P\n3/Lx7t2mq1mDtP3tPaYLxIgBA4DcXBMKC+l4Y8YYcfSoCRUVwNChyo9v7/GIEfTYYJAXr9LHAlod\nvy0eG41GTY9PIm/CwYPA2LHuHS801IiqKtfvx/79JvTuDXTqZMSoUe61PyYG+PhjEwYMsD2/ZYsJ\nnToBrq6Pa64xoqgIuOMOE26/HVizxvX5xO9HdbURPXoA27fTY4NBevu7dAEOHXK9f3U1UFBgwqlT\nyt/vnj1NyMgAXnqp9fP/+Q/AmLTrUfi7WMqajEwGf/3rX9lrr73G+vXrx8xmM2OMsYqKCtavXz/G\nGGNpaWksLS3Nuv+kSZPYzp07mdlsZvHx8dbtq1evZg899JDdcwBgf/sbY4sXy2mZfWbNYuzTT+nv\nujrX++/cydiIEfLOMXYsY1u3ym+bmPJyxoR/R3ExY3362LaHh7t3bEdYLIx17MjYunXaHJ8jn7lz\nGRs0SJ1jZWYylprqer8772Tsgw/UOef8+YytXNl8W2EhY337un5teDhjM2cyZjQy1r+//HO/8AJj\nTz8t/3WMMWYyMTZkiPN9rlxhzM+PscZGZecQaGxkLDqase3bWz83cSJjX36p7LjOpNypXXPq1Cnr\nyJmGhgZ89dVXGDJkCKZPn46srCwAQFZWFmbMmAEAmD59OtasWYPGxkYUFRWhsLAQSUlJiIiIQLdu\n3ZCbmwvGGFatWmV9jT169VJu14i/6WpqbLaElIJLnuh4BWhEzbvv0t+CJ88YZUVxce4d2xEGA8XL\nPXnpaB1HeLh6I52c2TXiONwdMSLmxhtbj7Bx5ccLdO1KEwo/+YSuQWe1cATUimPUKFtZEkecOUMd\nxO5OSvT3B/7v/6hss7j/wmQy4cQJbRaLdyryZrMZ48aNw+DBgzFy5EjcdtttGD9+PJYsWYKvvvoK\ncXFx+Oabb7Dk6tz8hIQEzJ07FwkJCZgyZQoyMjKsVk5GRgYeeOABxMbGIiYmBpOdVN13R+TFCB2v\nUpHb8coYdV6q6ZkHBNDP2bP0BaKVyAPAunXAgAHaHZ8jj7591Xs/5HjyPXuqc057Ii91rYKgICoN\nEhYGTJsGfP65vHMrKTkg0LEjcNttwIYN9LipiWaji3G301XMb39Lw5fFAwyFjm9NqsEquznQDgDs\n558Zi4lx/1h9+jD2yy/S9790iSwMi0Xa/idPMhYSoqxtzoiLY+zIEcb+8AfGXnlF/eNzvBOLRfpn\nzxWHDjGWkOB6v4gIxsrK1Dnn5s2MTZrUfNsXX7TeZo+ff7ZZIZ99xtj48fLOnZxM51fKhg1kvTLG\n2KuvkqUiZscOxm6+WfnxW/K//zE2dKjtcX6+e5rnTMq9csarpzL5a1osi+cKNawaewgjbAoKtM3k\nOd6FwSCvjK0zune3rTTlCIvFvQy4JWFhrUfXuFr6T6BfP5sVkpxM9aCcrTbVEndtp+RkKmZYUAC8\n8gqNuxeXhVAzkweAmTPJHhJ07uhRx6tYuYtXinzXrmSFuLPu46VLNIuvSxd5r5czjFJLka+qAvLy\ntPPk2xLuybc9ISGU5NhbMF6I4+xZmghHo1/cp3v31iLvauk/e3TpQuU9nJUAAJq/H+5+WXXuTHVm\npk6liWHh4c0nk6kxfFKMwUDzYvbvp8dffmlCv37qHV+MV4q8weB+Nn/mDH3Q5WZGQk2Xllgsrduj\nlchHRNAHrKpKuxWbOPomIIAyY2d3pWp2ugLuZfItGT8e2LFD2r6MqRPLjBl0nL/8hTpAxaMT1f5f\nASTyQuXZkhK0L5EHlIu8MJ5UrlUj4KjzdflyYOzY5tu0zOR37gT69DGqlmV5EvEcBl/G1+Lo3t1+\n56sQh5qdrgBl7E1NzUsEKF0kfsgQW5brCCGO8+dpYW13y3PMm0flRXr0AK6/vrXIq2nXAM1Fvq7O\n2P5Evndv9zJ5pSJvbxil2Qy89BK96eK6E1qK/Lffcj+e4x6hoc59ebWzU4OBhFB8TiV2DUC1Zw4c\nkLZqk1px+PvbfPGWmbzadg3QXOSPHm2nmbxQjfKbb6RXphR8OqGkgVyETF7cJ/Dkk8D991ObxG+8\nlnZNVRUQGGhS/+AewJe8bGf4WhyOhlHaZomqL1wtLRuldk1oKN2JtCx6Vl4OfPAB/a1lHNHRzcfN\na3GOvn1Jp44eBS5dMql6VyXGq0VeyOQffdQ2hlUq4olQcggOJoGdNYs+ZCEhlFUvW0Z1XqjkAKFV\nXZmrZYEgKvfD4chGLPKlpVSGV8zJk+oLV8vOV6WZPECWTV5e820rVwJvvtl8m5ojhATsZfJqn6ND\nB4pxzRrSEZWrw9jOo81h3UcQ+RMn6MPpqIxpS9z15ENCgOefp3/4uXN03oMH6YMaF2cT+XPn6Ntd\niwqRgsj/5jdG9Q/uAXzNy3aEr8Uh9uT//W/g9dfpb7Enr3Umr9STB+z78p9/brur1zKOtuh4Bciy\n+egjWy0pLfB6kf/iC+ockiryAkpFfuBAGkK1di2Nme/enWbjAc0z+QMHaHai2muvAjaR5548xx3E\nnvyJE637uNTueAVae/JK7RqgtcifPEklgU+daj6GXYssu08f21j5mhqyVXr3VvccAIm8lmPkAR8R\n+Ycfli7ygk+nVORnzwYyM+2Lt1jk9+2jN0gLAgKAt98Gjh83aXOCNsbXvGxH+FocYrumqMhWwrot\nPXl37Zr9+21j/b/4giYthYWhWYVNLeLo1ImOWVFBNXVGjaKkT22GDKHfTU0m9Q9+Fa8V+d69yfP+\n/nsS+RMnpPW0Cwjj5NUkNpZmxAE0O07JqvZSeewx8uw4HKWIRd5RJq+1J+9OJh8Z2Xx+yuefA9On\nkzaIB2JoZaUIls0339C4fS3o148mYmlh+wp4rYyEhNCtUlISZfWhodKWM3PXk3dGdDR94C5d0jaT\nF/A1D9gRPA7PIJQ2aGig3ydPAleu2OLQouNVzUzeYLBl8xcv0rJ+U6eS+FdU2OLQwq4BbCL/9dfA\nuHHqHx+g4mgmE5CaatTmBPBikTcYaCjhtGn02NkakvbQQuT9/ekbNz+f2qJ0qTQOpy0QMvniYprc\nExRkE2DGtBn7rWbHK0Aiv2QJMGYMjZ3v3r1tM/nvv6fjS10zVglJSdqNrAG8WOQBICUFmDOH/pYq\n8u568q6IjQX+9z+6zQoIUP/4YnzNA3YEj8MzCCJfVERjsoV+LpPJhNpaW1lrNVFrnLzAE09Q/fW0\nNCqNDdhEXng/tMzkP/oIMBq1t061/GwpXNGxbfi//7P97Q2ZPEAiv3YtMHq0+sfmcNREGEJ54gSt\neWqxUOdrQIB22a94dM2lS3TH4E6HZUQEzVkR07t388Wwtczk6+u18+PbCq/O5MVIFXmj0YgrV6hM\naXCw+u2IjaV2aO3HA77nATuCx+EZQkJIcIVMPiKCMnmj0YjiYm0m8ok7XgU/Xm0rQsjkjUYjLlyg\nPge1B1kAtlWa2kLktfxs6U7kARqV07s34OenfjuEsetajqzhcNRAqER56BBl8uJZ5AUF2tRK6dKF\nOncvXKDx31pUURV78ocOAQkJ2tgp118P/OEPvj9fxWdEXlhazF59bDEmk0nTYj+xsfSBGjhQm+OL\n8TUP2BE8Ds8RGgrs2dPak9fqGhEXKdu9mzoV1Ubsyefladcp6u9Ps4S17BQV0PKz5TMi360bZQnC\nhA5naCny118PbN/ufllTDqct6N6d5oy0zOS1vEaEztfdu4ERI7Q5fm0tLQqkpcjrBZ8ReUCaZWM0\nGjX9ABsMtGpNW+BrHrAjeByeIzSU+qZCQkjkKyspDi2XlhREftcubUS+QwfqX+jXz6gbkeee/FWk\n+vJaijyH40uEhlIWD9g6Xhsa6LewXW2EEsGVlUD//tqco3dvqqx56BAwaJA259ALPiXyI0ZIW/dR\nLyLvix6wPXgcniM0lPx4wGbXfPSRCTfcQLMttSAsDMjOphFoWgx+AEjk//MfqsEuFBD0Zbgnf5W7\n76YPT1WV430aGmhssJa1IDgcXyEszCbyXbuS1aF1EhQWRqUAtOh0Fejdm5bq04NVozU+JfLBwTQD\nNjPT8T7h4UbExOijuJcvesD24HF4jkWLgD/+0faYfHmjpsMCw8Jo3VUt/HiB3r2BI0eMuhF5j3ry\npaWlGDt2LAYMGICbbroJy5cvBwDU1NQgOTkZcXFxmDhxIs6KVr9OS0tDbGws4uPjsXXrVuv2vXv3\nIjExEbGxsVi0aJGiBi9cCLz7Lo3FtYderBoORw3Cw23rEwDky2/frn0mD2gv8hYLz+Sl4FLk/f39\n8eabb+Lw4cPYuXMn/vGPf+DIkSNIT09HcnIyCgoKMH78eKSnpwMA8vPzsXbtWuTn5yM7OxuPPPII\n2NXB7QsXLkRmZiYKCwtRWFiI7Oxs2Q0eOpSq0H3xhf3nt2wx6UbkfdEDtgePw3vo1Qv45Rdtr5Hu\n3UnohRmjWkALeJh0I/Ie9eQjIiIw+Op/8tprr0X//v1RXl6OjRs3IiUlBQCQkpKC9evXAwA2bNiA\nefPmwd/fH9HR0YiJiUFubi7MZjPq6+uRdNWoW7BggfU1cnnkESAjw/5zJSU8k+dwHNGrF/3W0q4Z\nOhR4+WVtJxFFRVEfgxalGfSGLOe6uLgY+/fvx8iRI1FVVYXwq/eB4eHhqLraG1pRUYEo0QrUUVFR\nKC8vb7U9MjIS5VIKxNthzhyq525vOOXZs0bdiLwvesD24HF4D716AcHBRk0KegmEhQEPPqjd8QEa\nmm2kGfkAABC2SURBVLlnj7FNZqO2BV4xTv7cuXO444478NZbb6Fri9qhBoMBhjb8bwcEAKmp5M2L\nYUy7mhwcjh7o1YuuD18XR4PB92vKtBWSRso2NTXhjjvuwD333IMZM2YAoOy9srISERERMJvN6Hl1\nReDIyEiUlpZaX1tWVoaoqChERkairKys2fbIyEi750tNTUX0VUMvODgYgwcPtn7TCd7VQw8Z8atf\nAcnJJnTqBAwYYMQHHwAGw9+xf3/r/X3xsdin84b2KH2cl5eHxYsXe017lD7Ww/vRubMJAwbkAeDv\nhzc9bhmTlP1NJhOKi4vhEuYCi8XC7rnnHrZ48eJm2//85z+z9PR0xhhjaWlp7KmnnmKMMXb48GE2\naNAgdunSJXbixAnWt29fZrFYGGOMJSUlsZ07dzKLxcKmTJnCNm/e3Op8EppkZcoUxh56iH4HBTE2\nfz5jy5fnSH69t5OTk+PpJqgCj8O74HF4H+7G4kw3DVd3cMh3332H0aNHY+DAgVZLJi0tDUlJSZg7\ndy5KSkoQHR2Njz/+GMFXC7i//PLLWLFiBTp27Ii33noLkyZNAkBDKFNTU9HQ0ICpU6dah2OKMRgM\ncNEkK99+C7z5Jnn0t99OBcw4HA6nveFMN12KfFsjR+Q5HA6H41w3dTAvtDliz8rX0UssPA7vgsfh\nfWgZi+5EnsPhcDg2uF3D4XA4Pk67sms4HA6HY0N3Is99Ou+Dx+Fd8Di8D+7JczgcDkcR3JPncDgc\nH4d78hwOh9NO0Z3Ic5/O++BxeBc8Du+De/IcDofDUQT35DkcDsfH4Z48h8PhtFN0J/Lcp/M+eBze\nBY/D++CePIfD4XAUwT15DofD8XG4J8/hcDjtFN2JPPfpvA8eh3fB4/A+uCfP4XA4HEVwT57D4XB8\nHO7JczgcTjtFdyLPfTrvg8fhXfA4vA/uyXM4HA5HEdyT53A4HB+He/IcDofTTtGdyHOfzvvgcXgX\nPA7vw6Oe/H333Yfw8HAkJiZat9XU1CA5ORlxcXGYOHEizp49a30uLS0NsbGxiI+Px9atW63b9+7d\ni8TERMTGxmLRokUqh2EjLy9Ps2O3NXqJhcfhXfA4vA8tY3Ep8vfeey+ys7ObbUtPT0dycjIKCgow\nfvx4pKenAwDy8/Oxdu1a5OfnIzs7G4888ojVJ1q4cCEyMzNRWFiIwsLCVsdUC/EXjq+jl1h4HN4F\nj8P70DIWlyJ/6623IiQkpNm2jRs3IiUlBQCQkpKC9evXAwA2bNiAefPmwd/fH9HR0YiJiUFubi7M\nZjPq6+uRlJQEAFiwYIH1NRwOh8PRDkWefFVVFcLDwwEA4eHhqKqqAgBUVFQgKirKul9UVBTKy8tb\nbY+MjER5ebk77XZIcXGxJsf1BHqJhcfhXfA4vA8tY+no7gEMBgMMBoMabQEADBo0yO3jZWVlqdQa\nz6OXWHgc3gWPw/twJ5ZBgwY5fE6RyIeHh6OyshIREREwm83o2bMnAMrQS0tLrfuVlZUhKioKkZGR\nKCsra7Y9MjLS7rH11JnC4XA4nkaRXTN9+nTrt05WVhZmzJhh3b5mzRo0NjaiqKgIhYWFSEpKQkRE\nBLp164bc3FwwxrBq1SrrazgcDoejHS4z+Xnz5mH79u04deoU+vTpg7/+9a9YsmQJ5s6di8zMTERH\nR+Pjjz8GACQkJGDu3LlISEhAx44dkZGRYbVeMjIykJqaioaGBkydOhWTJ0/WNjIOh8PheF9ZAw6H\nw+Goh0/PeL1y5Yqnm+A2Fy9e9HQTVKGoqMjTTVCFbdu2Ye/evZ5uhts0NjZ6ugmqwq915ficyP/w\nww949tlnAQB+fn4ebo1ydu/ejVmzZmHx4sX4+uuvffZDvG/fPkyYMAHPPfccLl++7OnmKGbfvn2Y\nPHkyZsyYgWPHjnm6OYr58ccf8dvf/hbPP/88CgoKfPZzBfBrXS18SuSzsrKQkpKCl156CWvXrgUA\nnxMWxhiWLFmChx9+GLfffjuuu+46/Pe//0V1dbWnmyabF198EXfddRfuvPNOrFq1Ch07uj0it82x\nWCx48MEH8eCDD+Khhx7C/PnzceTIEetzvsShQ4fw+OOP4ze/+Q169uyJ999/HytXrvR0sxTBr3V1\nG+IzbN26lZWUlLAtW7awqKgo63aLxeLBVsln06ZN7PTp04wxxsrLy9ncuXPZhQsXPNwq+Sxbtozd\ne++91sd79+5ljY2NHmyRMj7++GN2/vx5xhhj2dnZbPTo0ayhocHDrZLPP//5T3b33Xczxhirr69n\nzz77LBs3bhw7ceKEh1smn6+//loX1/qXX37p8Wvd7/nnn3++bb9WpLN69Wp88sknqKurQ3x8PKKj\no3HttdciNjYW69atQ1FREcaNG4fLly979e1cyzji4uLQuXNnfPvtt5g2bRqampqwa9cuNDQ0NCsE\n520IcdTW1iI+Ph4jRozAihUrsG/fPjzzzDPYvXs3Nm/eDIvFggEDBni6uQ5p+X4MGDAA/v7+sFgs\nKC4uhtlsxpgxYxAYGOjppjqlZRx+fn5Yu3Ytbr31VkRERODbb7/F2bNnUVJSgvHjx3u6uU4xmUyo\nrKy0zoy//vrr0aVLF8TFxfnUtd4yjtjYWHTu3Bk7duzw3LXepl8pErFYLCwjI4MNHjyYZWZmstjY\nWJaZmclqa2ut+xw6dIh17dqVVVZWerClzrEXx4oVK6xxHDx4kH399deMMcZWrFjB7r//fnb06FFP\nNtku9uJ47733GGOMffLJJ8xoNDKTycQYY+zdd99l999/P/v555892WS7OHo/6urqrPuUlpay6Oho\nVlZWxhhj7MqVK55qrkPsxfGf//yHmc1m9swzz7BRo0ax6dOns2nTprHVq1ezJ5980mvvFOvq6tjM\nmTNZcHAwS01NtWa9V65csf7vfeFadxYHYxSDp651rxR5xhhbsGAB++ijjxhjjH311Vds/vz5bNOm\nTcxisVhv2e677z6WmprKGKPbIm/EURwtxaOwsJDNnDmTVVRUeKKZLmkZx1133cU2b97MGGPszJkz\n1v2OHTvGpk+fzsrLyz3STlc4+1wJ3HXXXeytt97yVBMlIY5j69atbP78+db346effmLr1q1jjDG2\ne/duNnnyZI+10xUXL15ky5cvZ1988QVbunQpe/fdd5s9f/nyZcaY91/rjuKwZy+19bXuNR2vK1eu\nxPbt21FTUwMA6N+/P8rLy3H58mVMmDABiYmJ+O6771BaWmqdYJWZmYmsrCyEhITgwIEDXrFsoNQ4\nWhZo+/rrr9GhQwd06dLFE81uhas4Bg0aBJPJhJKSEgQHB1tft3XrVhgMBp+JQ/y5AoCmpibExMR4\nnVXjLI7k5GQkJiYiJycHpaWlGDBgAGbOnAkA+OabbzBy5Eiv6kReuXIlTCYTzpw5g06dOuHBBx/E\nhAkTEBcXh71796KgoABA845vb73WXcVhb1m+tr7WPerJM8ZgNptx22234cCBAygvL8f69esxYcIE\nVFZWori4GNdddx3CwsIQFRWFDz74AElJSejVqxdOnDiB+++/Hz169MCnn36KWbNmqVoora3i2LJl\nC+68805UVlYiLS3NYU0fb48jJycHs2bNwsmTJ5Gent6s6qgvxeHn54dNmzbhwoULGDdunMdiUBLH\nhx9+aI1j165duPvuu3HixAk888wz6N69u1fGMnr0aAQFBcHPzw+BgYEoLCzE0aNHMWbMGGvxw5KS\nEtx7773o2bOn117rruK4ePEiTCYTZs+ejaqqqra91tvkfsEOTU1NjDHGfv75ZzZ//nzrtoULF7J7\n7rmHXbp0id13330sKyuLnT17ljFGt6jPPvssY4wsgp07d3qm8SKUxvHcc88xxhg7cOAA27hxo2ca\nL8Ld96OgoIBt2LDBM40X4W4cjHmHD680jmXLljHGGDt58iTLycnxSNtb4iiWRx99lM2cObPZvuvW\nrWMLFy5khYWF7MKFC+zy5cvs7NmzXn2tu4qjoaGBNTY2soMHD3rkWm/zgc1XrlzBsmXLYLFYMGXK\nFNTX11vHV3fs2BFvv/02evXqhfz8fMybNw+fffYZysrKsHTpUvj5+VkXHgkODsbIkSPbuvmqxTFi\nxAgAwMCBAzFw4ECfjUN4P2JjYxEbG+vzcQBAhw6eczHdjUO4Jnr06AGj0eixOADXsbz11lvo3bs3\ntm/fjjFjxgAAZs6ciSNHjmDSpEk4d+4ccnJykJCQ4NXXutQ4EhMTPTN6ri2/UUwmExs0aBB7+OGH\n2XvvvcduueUWtnnzZtanTx+Wm5tr3e+dd95hEydOZIxRpjt16lSWlJTEZsyYwerr69uyyXbhcfA4\ntEAvcTAmPZaMjAw2ZswY6+O1a9eywMBAdv/997OqqioPtLw5eoijTUV++/btbOXKldbHDz/8MMvI\nyGArVqxgQ4cOZYxRb7rZbGZ33HGHdRJHTU2NdUibN8Dj4HFogV7iYExeLLNnz7bGsn37drZ9+3aP\ntNkeeoijTe9LR4wYgTlz5lhrN9xyyy3WTpUrV65g+fLl8PPzQ1lZGfz9/XHDDTcAAEJCQjzaIdkS\nHgePQwv0EgcgL5aOHTtaYxk9ejRGjx7tyaY3Qw9xtKnId+7cGQEBAdYZa1999RXCwsIAACtWrMCR\nI0cwbdo0zJs3D0OHDm3LpsmCx+Fd8Di8D73Eoos4PHH70NTUxC5fvswmT57MCgsLGWM0QaCmpobt\n2LGDlZaWeqJZsuFxeBc8Du9DL7H4chweGUbQsWNHNDU1ISwsDAcPHsS0adPwwgsvwM/PD7fccotH\nx1jLgcfhXfA4vA+9xOLTcXjq2+WHH35gBoOBjRo1iv373//2VDPchsfhXfA4vA+9xOKrcXhsxqvB\nYED37t3xr3/9yzpm3BfhcXgXPA7vQy+x+GocfI1XDofD0TFeU6CMw+FwOOrDRZ7D4XB0DBd5DofD\n0TFc5DkcDkfHcJHncDgcHcNFnsMR8fzzz+P11193+PyGDRtw5MiRNmwRh+MeXOQ5HBGuVhz67LPP\nkJ+f30at4XDch4+T57R7XnrpJaxcuRI9e/ZEnz59MGzYMAQFBeG9995DY2MjYmJisGrVKuzfvx+3\n3XYbgoKCEBQUhHXr1sFiseCxxx5DdXU1AgMD8f7776Nfv36eDonDseHZCbccjmfZs2cPS0xMZA0N\nDayuro7FxMSw119/nZ0+fdq6z7Jly9jbb7/NGGMsNTWV/e9//7M+N27cOGvBqp07d7Jx48a1bQAc\njgvafPk/Dseb2LFjB2bNmoWAgAAEBARg+vTpYIzh0KFDWLZsGWpra3Hu3DlMnjzZ+hp29eb33Llz\n+PHHHzFnzhzrc42NjW0eA4fjDC7ynHaNwWCwiraYe++9Fxs2bEBiYiKysrJgMpmavQYALBYLgoOD\nsX///rZqLocjG97xymnXjB49GuvXr8fFixdRX1+Pzz//HABQX1+PiIgINDU14YMPPrAKe9euXVFX\nVwcA6NatG2644QZ8+umnACjDP3jwoGcC4XAcwDteOe2el19+GVlZWejZsyeuv/56DB06FIGBgXj1\n1VfRo0cPjBw5EufOncOKFSvwww8/4MEHH0RAQAA+/fRTGAwGLFy4EGazGU1NTZg3bx6WLVvm6ZA4\nHCtc5DkcDkfHcLuGw+FwdAwXeQ6Hw9ExXOQ5HA5Hx3CR53A4HB3DRZ7D4XB0DBd5DofD0TFc5Dkc\nDkfHcJHncDgcHfP/Gbg+V7BvyiUAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x2ccca90>" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"3. Data inspect acf pacf" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Not real sure how to interpet these two graphs.. I think it says that as I suspect the auto correlaton at the 0 and 12 month levels are high, the PCF graph is still more of a mystery..Comments tell me that the ACF iddicates the longer cycle sould be diffed out,, and that the signifigance at ponts 0 and 12 indicate the seasonality is strongest there (as suspected). the PACF looks mostly random (except for 0 and 1).. Which is mostly what we should have? note that I did do a single order diff below Heading 5" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig = plt.figure(figsize=(12,8))\n", | |
"ax1 = fig.add_subplot(211)\n", | |
"fig = sm.graphics.tsa.plot_acf(actdf.values.squeeze(), lags=13, ax=ax1)\n", | |
"ax2 = fig.add_subplot(212)\n", | |
"fig = sm.graphics.tsa.plot_pacf(actdf, lags=13, ax=ax2)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAHpCAYAAACBevrLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXmSV7yAYZskG0gASVxRu1+qsSqyzSNvZa\nomirFChqe6lF+7i1F70VrIhL7/Xa2tsHUIuh7vH2UVAwUWpDXYpp1YteF2SLZLcxZCPbLOf3xzCT\nTDYDk2SyvJ+PxzzmnDPfM+czhyXvfOd7vscwTdNERERERGScs4S6ABERERGRkUDBWEREREQEBWMR\nEREREUDBWEREREQEUDAWEREREQEUjEVEREREAAVjEZFx5fHHH+eSSy457f2XLFnC73//+0GsSERk\n5FAwFhHpJicnh8TERDo6Oga8j8Vi4ciRI0NY1fBbv349N9xwQ8C23bt399gmIjJWKBiLiHRRWlpK\nSUkJycnJ7Ny585T2He77Jblcrh7b3G73sNYgIjKWKBiLiHSxfft2rrjiCm644Qby8/P923Nycnjs\nscf8612HJFx66aUAzJkzh9jYWAoKCgDYunUr06dPJykpiauuuoqqqir//h988AELFiwgKSmJyZMn\ns2nTJgDa29tZu3YtaWlppKWlcdttt/l7rouLi0lPT+fBBx8kJSWFlStXsmHDBpYuXcoNN9xAXFwc\n+fn5NDQ0sGrVKlJTU0lPT+ff//3f8Xg8vX7eH/3oR0yZMoW4uDiys7N5/fXXASgsLGTTpk08++yz\nxMbGMm/evB7nwTRN7r33XjIzM3E4HCxfvpzGxkbA+wuGxWJh+/btTJ06lUmTJnHfffcF+acjIjK0\nFIxFRLrYvn071157Lddccw1FRUX84x//AMAwDAzD6HWfv/zlLwC89957NDU1kZeXx6uvvsq6deso\nKCigqqqKqVOnsmzZMgCampq44oorWLJkCVVVVRw6dIjLL78cgI0bN1JSUsL+/fvZv38/JSUl3Hvv\nvf5j1dTUcPz4cY4dO8aWLVswTZOdO3eSl5dHQ0MD119/Pd/97ncJCwvj8OHDvPvuu7z88sv89re/\n7bX2Cy64gP3793P8+HGuv/568vLy6OjoYPHixaxbt45ly5bR1NTEu+++2+M8bNu2jfz8fIqLizly\n5AjNzc2sWbMm4P3feOMNPvnkE/70pz9xzz338PHHH5/uH42IyJBTMBYROen111+noqKC3Nxcpk+f\nzqxZs3jyySdP672efPJJVq1axdy5cwkLC2PTpk389a9/5dNPP+XFF18kNTWV2267jbCwMGJiYrjg\nggsAeOqpp/jZz37GxIkTmThxInfffXfAxW4Wi4UNGzZgt9uJiIgA4OKLLyY3NxeAhoYGXnrpJR5+\n+GEiIyOZNGkSa9eu5Zlnnum1zm9/+9skJCRgsVi4/fbbaW9v58CBA4C3R7i/4SFPPvkkP/7xj8nM\nzCQ6OppNmzbxzDPPBPRO33333YSHhzN79mzmzJnD/v37T+t8iogMBwVjEZGT8vPzWbhwIbGxsQDk\n5eUFDKc4Fb5eYp/o6GiSkpKoqKigvLycM888s9f9KisrA/abMmUKlZWV/vVJkyYRFhYWsE96erp/\n+dNPP8XpdJKSkkJCQgIJCQnccsst/p7v7n7xi18wa9Ys4uPjSUhIoKGhgdra2tP6jFOmTMHlclFT\nU+PfNnnyZP9yVFQUJ06cGNB7i4iEgi3UBYiIjAStra0899xzeDweUlJSAO9434aGBt577z2io6MD\nQl11dXW/75eamkppaal//cSJE3z++eekp6eTkZHRZw+ub7+srCwAjh07Rmpqqv/17sM5ug/xyMjI\nIDw8nM8//xyLpf++j9dee42HHnqIV199lbPPPhuAxMREfy9xX0NH+vqMx44dw2az4XA4OHbsWL/7\nioiMROoxFhEB/vjHP2Kz2fjoo4/843s/+ugjvvKVr7B9+3bmzp3LH/7wB1pbWzl06FDAhXgADoeD\nw4cP+9evu+46tm3bxv79+2lvb2fdunV8+ctfZsqUKXzta1+jqqqKRx55hPb2dpqamigpKfHvd++9\n91JbW0ttbS333HNPv9OjdR/qkJKSwsKFC7n99ttpamrC4/Fw+PBh/zjorpqamrDZbEycOJGOjg7u\nuece/8Vz4O3tLS0t7XM4xXXXXcfDDz9MaWkpzc3N/jHJ/QXy4Z65Q0TkVCgYi4jgvehu5cqVpKen\nk5ycTHJyMg6HgzVr1vDUU0/5xwM7HA5WrFjBd77znYAe1fXr17N8+XISEhJ4/vnnufzyy/n5z3/O\nt771LVJTUzl69Ki/lzg2NpZXXnmFF154gZSUFGbMmEFxcTEAd911F9nZ2cyePZvZs2eTnZ3NXXfd\n5T/OF/UY+z5LR0cHs2bNIjExkby8PH8Pd9f2ixcvZvHixcyYMYPMzEwiIyOZMmWK/33y8vIASEpK\nIjs7u8c5W7lyJTfccAOXXnopZ555JlFRUfzqV7/qs9a+tomIjBSGqV/fRURERETUYywiIiIiAgrG\nIiIiIiKAgrGIiIiICDCCpmvLyclh7969oS5DRERERMaw+fPn+y947m7E9Bjv3bvXf5el4Xzcfffd\nITnueH/ovOu8j5eHzrnO+3h66LzrnI+GR38dsSMmGIuIiIiIhJKCsYiIiIgICsbk5OSEuoRxSec9\nNHTeh5/OeWjovIeGzvvw0zkfXEHf4GPlypXs2rWL5ORk3n///V7b3Hrrrbz00ktERUXx+OOPM2/e\nvJ6FGAZBliIiIiIi0q/+MmfQPcYrVqygsLCwz9d3797NoUOHOHjwIFu2bOH73/9+sIcUERERERl0\nQQfjSy65hISEhD5f37lzJ8uXLwfgwgsvpL6+npqammAPG7SCgiIWLlzHwoXrKCgoCnU5IiIiIhJi\nQz6PcUVFBRkZGf719PR0ysvLcTgcQ33oPhUUFHHLLVXU1W0E4O238zGMIpYuXRSymkREREQktIbl\n4rvu4zgMwxiOw/Zp69a91NUtBwzAoK5uOVu26OYiIiIiIuPZkPcYp6WlUVZW5l8vLy8nLS2t17br\n16/3L+fk5OhKSxEREREJSnFxcZ93uusu6FkpAEpLS/nGN77R66wUu3fv5tFHH2X37t3s27ePtWvX\nsm/fvp6FDOOsFJ1DKbxjnxMT89m8OUVDKURERETGuP4yZ9DB+LrrrmPv3r3U1tbicDjYsGEDTqcT\ngJtvvhmANWvWUFhYSHR0NNu2beO88847pSKHwvPPF7Fly15eeaWIgoL7FIpFRERExoEhDcaDJVTz\nGGv+ZBEREZHxY0jnMRYRERERGQsUjEVEREREUDAWEREREQEUjEVEREREAAVjERERERFAwVhERERE\nBFAwFhEREREBFIxFRERERAAF41GpoKCIhQvXsXDhOgoKikJdjoiIiMiYYAt1AXJqCgqKuOWWKurq\nNgLw9tv5GEaRbmktIiIiEiT1GI8yW7fupa5uOWAABnV1y9myZW+oyxIREREZ9RSMRURERERQMB51\nVq+eT2JiPmACJomJ+dx00/xQlyUiIiIy6ikYjzJ5eYvYvDmFBQvuBLLZvDlF44tFREREBoFhmqYZ\n6iIADMMgFKWE6riDYTTXLiIiIhIK/eUn9RiLiIiIiKBgLCIiIiICDEIwLiwsZObMmUyfPp0HHnig\nx+u1tbUsXryYuXPncs455/D4448He0gRERERkUEX1Bhjt9vNWWedxZ49e0hLS+P888/n6aefJisr\ny99m/fr1tLe3s2nTJmpraznrrLOoqanBZgu8t4jGGJ+60Vy7iIiISCgM2RjjkpISpk2bRmZmJna7\nnWXLlrFjx46ANikpKTQ2NgLQ2NhIUlJSj1AsIiIiIhJqQSXUiooKMjIy/Ovp6em89dZbAW1Wr17N\nV7/6VVJTU2lqauK5554L5pAiIiIiIkMiqGBsGMYXtrnvvvuYO3cuxcXFHD58mAULFrB//35iY2N7\ntF2/fr1/OScnh5ycnGDKExEREZFxrri4mOLi4gG1DSoYp6WlUVZW5l8vKysjPT09oM2bb77JnXfe\nCcCXvvQlzjjjDA4cOEB2dnaP9+sajEVEREREgtW9s3XDhg19tg1qjHF2djYHDx6ktLSUjo4Onn32\nWXJzcwPazJw5kz179gBQU1PDgQMHOPPMM4M5rIiIiIjIoAuqx9hms/Hoo4+yaNEi3G43q1atIisr\ni82bNwNw8803s27dOlasWMGcOXPweDw8+OCDJCYmDkrxMvoUFBSxdeteAFavnk9enm5nLSIiIiOD\nbgk9iqc8G221FxQUccstVdTVLQcgMTGfzZtTWLpU4VhERESGh24JLSPC1q17T4ZiAzCoq1vOli17\nQ12WiIiICKBgLCIiIjLqFBQUsXDhOhYuXEdBQVGoyxkzdKcNGTarV8/n7bfzA4ZS3HTT/BBXJSIi\nMrp0Dk3cCMDbb+djGEUamjgI1GMswyYvbxGbN6ewYMGdQLbGF4uIiJwGDU0cOgrGMqyWLl3Eyy/f\nB7yjUCwiIiIjioKxiIiIyCiyevV8EhPzARMwNTRxECkYi4iIiIwiGpo4dDSP8SibC7gr1S4iIjK+\n6efpqdM8xiIiIiIiX0DBWERERMYlzQUs3WkeYxERERl3NBew9EY9xiIiIjLuaC5g6Y2CsYiIiIgI\nCsYiIiIyDmkuYOmNgrGIiIiMO5oLOHRG8kWPmsd4FM//p9pFRESCN5p/Jo222jsvelwOQGJi/rD/\nUjKk8xgXFhYyc+ZMpk+fzgMPPNBrm+LiYubNm8c555xDTk5OsIcUERERkVFopF/0GNR0bW63mzVr\n1rBnzx7S0tI4//zzyc3NJSsry9+mvr6ef/mXf6GoqIj09HRqa2uDLlokFAoKiti61fuPd/Xq+eTl\n6Ss3ERGRsSSoYFxSUsK0adPIzMwEYNmyZezYsSMgGD/11FN861vfIj09HYCJEycGc0iRkNB8lyIi\nIsFbvXo+b7+dHzCUYiRd9BjUUIqKigoyMjL86+np6VRUVAS0OXjwIHV1dVx22WVkZ2fz+9//PphD\nioTESP/qR0REZDQY6Rc9BtVjbBjGF7ZxOp288847/OlPf6KlpYWLLrqIL3/5y0yfPr1H2/Xr1/uX\nc3JyNB5ZREREZIxZunQRS5cuwjA2DUsoLi4upri4eEBtgwrGaWlplJWV+dfLysr8QyZ8MjIymDhx\nIpGRkURGRnLppZeyf//+LwzGIiPJSP/qR0QklHQNhoxk3TtbN2zY0GfboIZSZGdnc/DgQUpLS+no\n6ODZZ58lNzc3oM1VV13F66+/jtvtpqWlhbfeeotZs2YFc1iRYTfSv/oREQkV3zUYr7yykVde2cgt\nt1Tx/PMja25akYEKeh7jl156ibVr1+J2u1m1ahX/9m//xubNmwG4+eabAfjFL37Btm3bsFgsrF69\nmltvvbVnIZrH+JSp9tAYzbWLiAy2hQvX8corG/FegwFgsmDBnbz88n2hLOuUjOb/11X74B5XN/jQ\nX6iQUO0iImODgnFoqfbBPa5uCS0iIiKnbfXq+SQm5gMmYOoaDBnVFIxFRETktOkaDBlLNJRCX0GE\nhGoXERl7Ruv/j6O1blDtg31c9RiLiIiIiKBgLCIiIiICKBiLiIiIiAAKxiIiIiIigIKxiIiIiAig\nYCwiIjIiFBQUsXDhOhYuXEdBgW6pLBIKtlAXICIiMt4VFBRxyy1V1NVtBODtt/MxjCLNBywyzNRj\nLCIiEmJbt+6lrm453tsqG9TVLWfLlr2hLktk3FEwFhERERFBwVhERCTkVq+eT2JiPmACJomJ+dx0\n0/xQlyUy7igYi4iIhFhe3iI2b05hwYI7gWw2b07R+GIZszweD+3t7aEuo1eGOUJusD0S75c90qn2\n0BiNtRcUFLF1q3e84urV88nL0w9ckZFqNP4f4zNaax+tdUPoazdNE6fT2eujtTXw0dbmfXa5TDwe\ng29/+9IRl/00K4XIGKer3UVEZKBcLlevIbe9vfeg29bmAuyAHcOwY5qdyxZLBFZrLDabHZvNjt1u\nJyLCjtVqpbr6aIg/ae8UjEXGOO/V7hvxXu3Oyavd71QwFhEZ49xud68ht6PDSUtLYC+ub9k0rfiC\nLQQGXZstEpvNjtVqx24PIzbWTnz82IqSQX+awsJC1q5di9vt5nvf+x533HFHr+3+9re/cdFFF/Hc\nc89x9dVXB3tYERERkXHBNE1cLpf/4XQ6/c8AH398iNZWJy0tHV16cp243Qam2XvItVpj/D25Vqud\nqCg7EybYMQwjpJ811IIKxm63mzVr1rBnzx7S0tI4//zzyc3NJSsrq0e7O+64g8WLF4/aMTwio9Xq\n1fN5++38k3OkoqvdRURCxOPx9Ai2vrDb0eEdltDa6qS93UVbW9dnN4ZhwzRtJ0Oud9k7hAHefz8S\nm22CP+iGhXmDrsWiORZOVVDBuKSkhGnTppGZmQnAsmXL2LFjR49g/Ktf/YqlS5fyt7/9LZjDichp\nyMtbhGEUsWXLnbzyShGbN9+nYRQiIkHoq/fW5XLR3h4YcNvbO5ddLhPoDLfeXlzbybG5NqzWqJM9\nuDb/84QJdiwWa789uZMmpQ3XRx/zggrGFRUVZGRk+NfT09N56623erTZsWMHr776Kn/729/GfRe9\nSCgsXbqIpUsXYRibFIpFRPB+m+1yuXC73QB8/vnnAWG3a7jtDLne7aZpwTskoTPcentvbVgsYQEB\n12q1ER5uJyrKhtVqDeEnloEIKhgPJOSuXbuW+++/3z81Rn9DKdavX+9fzsnJIScnJ5jyREREZAwx\nTRO32x0Qars++5bb2110dLhpa3PhdHrXuz53dLjx3srBBnjD6p49lScDrjfkWq3eGRW69t5GR9uZ\nMMGmTr5Rpri4mOLi4gG1DSoYp6WlUVZW5l8vKysjPT09oM3bb7/NsmXLAKitreWll17CbreTm5vb\n4/26BmMREREZG3yBtrcw2zXUtre76ejwPncPs96hCB68QdaKd0iCzb9smtaT43CtWK0RWCxWrFZb\nwHN4uI2oKGuvQxMcjnOH/8TIsOje2bphw4Y+2wYVjLOzszl48CClpaWkpqby7LPP8vTTTwe0OXLk\niH95xYoVfOMb3+g1FIuIiEhoeTwePB4Pbrfb/9x1ubfnjg43Tqf7ZGiF11/f3yPUulwef2jtK8yC\nDavV3iPMeociWDUUQYZFUMHYZrPx6KOPsmjRItxuN6tWrSIrK4vNmzcDcPPNNw9KkSIiIuNdf+G0\nt2fvHLbe4Op2dz77gqr32dvG6fS+ZpoGhmHFNC0YhhXvcAPvsze8etd9bcCKxRKGxWL1z4Bw/PgU\nf6j1hlmbZkeQUSPoeYyvvPJKrrzyyoBtfQXibdu2BXs4ERGRPp3u7c9N08Tj8fivhfEtD3Rbf697\nPCYej4nL5V12uwO3eYcZeHC7O6/DefnlvwUE2O6h1RtOA0Nr10DbGVpt/tDqfe5cNgwLNpsVu93i\n3z4YY2djYxOCfg+RUBlbtysREZEB8QUwX4AbyHr3RzCv9/Wax+Nbxh8efY++Xvdt37Pnrzz4oIWm\nJu/tz/fte4z33/9vvvKV80+29YbPwHDqffbeGdICGBiGBdM0Apa9gdES0A6MkwG0930621q6hE6j\n12XD8D17g6nbPQu73UpY2OCGVhHpn4KxiIwrXXvzuvfuDWR9oPv4AljX8Gaa9BvuvPV9cfvOY/W+\n7g16fa97j+ULWb4wZ+Atoff1rtsDt/Vs0xkk+3+P3l6DwIDoa+vb1nXd97pv2//8z0Gamh7019XU\ntIoXX7yDiy5ajmEY2GwWbDZve+9X+8aIDZyRkdGhLkFkXFIwFpEh5Rvz2HX84xctu90eXC4PL7zw\nF/7nf97F44GrrjqXr371y/7A2f3r5+5fUXftIewaLgN787r37hknv57uGdZ8ga+vfbqudw13/QW5\nruud4czoMxj2tb/Fcjr7jz02m73HNqvVppApIgOmYCwyzvimTTrVsOpyebpcsOMJGPvY17LbbeL7\nKrnzop3OZe/YyM7lrtvfeutNtm71cOLEIwB88ME2jh8/wFe+8tUuYdISEBQtFgtWa2cQ9PUK9gyf\nMhZ97WvzOXAgn6Ym7+3PY2Pz+drXdPtzERk4BWORUcrj8eB0Ov0P392anE4nra2BD9/dmgCee+61\nk2G08yKdwIt4ul6807WNrctYRwtWqzfkdr2Qx2KxEB5uISqqc/10vf76Zk6c2IivZ7S5eQV//vOd\nLFmyNNhTJ2NUTs4ioIhdu+7k738v4vbb7zu5TURkYBSMRUaA7iG366O1tfPWpN5l77PLZeK9Jakd\n761IvQ/TtPnv2GSz2f2PuDjvP3eH49IQflKRoZWTs4icnEVcdtkmhWIROWUKxiKDzDt3aGAPru/R\n0uIMCLjeh6tHyDXNzqBrtUb5b0dqs9mx2+1ERNjH/ET3+lpcRESGm4KxyAA4nU7a2tpobW0F4OjR\n0oChCr5e3LY2J263EdCLa5o2uodc3yMszE5UlF2T3/dCX4uLiMhwUzAWwXtBWnt7O62trbS1tXHi\nRCv19a00NLTR0NBKRwcYRiSmGQFASYmBxRIYcsPD7URHK+QOJn0tHhrFxUXs2uW9ScbXvjZf515E\nxg0FYxk33G63v9e3tbWVpqa2k+G3laamdjyeMAwjAtOMxGKJxG6fRHh4JHFxkVitgf9UHI6pIfoU\nIkOruLiI//zPKv9NMg4cyAeKFI5FZFxQMJYxpaOjw9/r29LiDb0NDd4A3NbmPtnjGwlEYLVGER6e\nRFhYBBMnRqinVwTYtWvvyVDsu0nGcnbtulPBWETGBQVjGVVM0wzo9T1xorPXt6GhDZfL6u/1hUjC\nwhIIC4skKiqSuLiwUJcv44iGI4iIjD4KxjLiuFwuf69va2tn6G1oaKW5uQPTDPeP97VYIgkPjyMs\nLIKEhMgxP1ODjA6jeTiCZgMRkfFMwVhCpr6+/mTPr7fXt76+lcbGNtraPCeDr3fIg80WS3h4MmFh\nESQnR+juZTLijebhCJoNRETGMwVjGXKmadLc3ExDQwOVlfVUVjYAUFR0FNOMxDAisduTCA+PJCYm\nkvh4e4grFhnfNBuIiIxXCsYy6HxBuL6+nsrKeioqGujoCAfiiYhwEB09AwCHY15oCxUZIhqOICIy\nOgUdjAsLC1m7di1ut5vvfe973HHHHQGvP/nkkzz44IOYpklsbCy/+c1vmD17drCHlRHENE2ampr8\nPcKBQXgyEybMxGZTL7CMHxqOICIyOgUVjN1uN2vWrGHPnj2kpaVx/vnnk5ubS1ZWlr/NmWeeyV/+\n8hfi4uIoLCzkpptuYt++fUEXLqHjC8LHj9efHBrRiNMZAcQTGZmiICyChiOIiIxGQQXjkpISpk2b\nRmZmJgDLli1jx44dAcH4oosu8i9feOGFlJeXB3NICQHTNGlsbOT48XqqqhqoqGjA5YrEG4RTiYvL\nUhAWERGRUS+oYFxRUUFGRoZ/PT09nbfeeqvP9o899hhLliwJ5pAyDDwej79HuKKinqqqRlyuKAwj\nnoiINBISZvW4E5yIiIjIaBdUujmVabP+/Oc/87vf/Y433nijzzbr16/3L+fk5JCTkxNEdTJQHo/H\n3yNcWdngD8LeHuF0EhLiFIRFRERkVCouLqa4uHhAbYNKO2lpaZSVlfnXy8rKSE9P79HuvffeY/Xq\n1RQWFpKQkNDn+3UNxjJ0ugbh8vJ6qqubcLujMYx4IiMzSEiYoCAsIiIiY0L3ztYNGzb02Tao9JOd\nnc3BgwcpLS0lNTWVZ599lqeffjqgzbFjx7j66qt54oknmDZtWjCHk9Pk8XhoaGigrs7bIxwYhKeQ\nmBinO8aJiIjIuBdUMLbZbDz66KMsWrQIt9vNqlWryMrKYvPmzQDcfPPN3HPPPRw/fpzvf//7ANjt\ndkpKSoKvXPrkdrtpbGykrs47Rri6uhmPJwbDiCcqaiqJiRMUhEVERES6Cfr78iuvvJIrr7wyYNvN\nN9/sX/7tb3/Lb3/722API/1wu93deoS7BuFMkpIUhEVERES+iAaSjlJNTU0AFBe/Q03NCUwzFsOI\nJzr6DCZOnIDFYglxhSIiIiKji4LxKOLxePjss8/4+OMKqqpcADQ3n8mkSQrCIiIiIsFSMB4F2tra\nKCur5MMPq2hpmUBUVCaTJycCEBMTH+LqRERERMYGBeMRrK6ujkOHKjhypBHDmEx8/HnExUWGuiwR\nERGRMUnBeIRxuVxUVVXz4YcVfP65lfDwNJKTz9ZQCREREZEhpmA8QjQ3N/Ppp5V8/PFnOJ1JxMTM\nJDU1LtRliYiIiIwbCsYhZJom//jHPzhwoILy8jas1lQSEi7Abg8LdWkiIiIi446CcQi0t7dTUVHF\nBx9U0twcTWRkOpMnT8QwjFCXJiIiIjJuKRgPo/r6eo4cqeDQoXo8nmTi4uaQkhId6rJEREREBAXj\nIed2u6mpqeHDDyv47DOTsLA0kpJm6k50IiIiIiOMgvEQaWlp4dixSj76qIa2tnhiY6eTmqo5h0VE\nRERGKgXjQWSaJp9//jkHD1ZQWnoCiyWFhIRsEhLCQ12aiIiIiHwBBeNB4HQ6qaz0XkzX0BBOeHgq\nDsckzT0sIiIiMoooGAehsbGRo0crOHDgc9zuScTHn0NKSkyoyxIRERGR06BgfIo8Hg+fffYZH39c\nQVWVC5stlaSk6VitOpUiIiIio5nS3AC1tbVRVlbJhx9W0dIygejoM0hJSQx1WSIiIiIySBSMv0Bd\nXR2HDlVw5EgjhjGZ+PjziIuLDHVZIiIiIjLIgr46rLCwkJkzZzJ9+nQeeOCBXtvceuutTJ8+nTlz\n5vDuu+8Ge8gh53K5KCsrp6joLQoLj1BWNpHk5ItwOL5EeLhCsYiIiMhYFFSPsdvtZs2aNezZs4e0\ntDTOP/98cnNzycrK8rfZvXs3hw4d4uDBg7z11lt8//vfZ9++fUEXPhSam5spLa3g44//gcuVRGxs\nFqmpE0JdloiIiIgMg6CCcUlJCdOmTSMzMxOAZcuWsWPHjoBgvHPnTpYvXw7AhRdeSH19PTU1NTgc\njmAOPaiXK8TCAAAgAElEQVQ+++wzDhyooLy8Das1lYSEC7Dbw0JdloiIiIgMo6CGUlRUVJCRkeFf\nT09Pp6Ki4gvblJeXB3PYQeN0OgF44YWDfP55OpMnf5nk5KkKxSIiIiLjUFA9xoZhDKidaZoD2s8w\n1ndZyzn5GEp2wOR73xviwwwZk8suC3UNp0u1h8ZorX201g2qPVRUe2iM1tpHa90wems/AzAZYJQM\nUvHJxxcLKhinpaVRVlbmXy8rKyM9Pb3fNuXl5aSlpfX6fqa5PphygtLU1MTRoxV88kktTudE4uLS\niIqKDVk9IiIiImNVdfVRLrrIwtSpU4fhaDl07Ww1jA19tgxqKEV2djYHDx6ktLSUjo4Onn32WXJz\ncwPa5Obmsn37dgD27dtHfHz8iBpf7BMbG8vs2TO56qoL+X//LxqL5UOqqt6hrq4aj8cT6vJERERE\nZIgF1WNss9l49NFHWbRoEW63m1WrVpGVlcXmzZsBuPnmm1myZAm7d+9m2rRpREdHs23btkEpfKjY\n7XamTMkgIyPdP4fx0aNHMIzJJCSkEhYWEeoSRURERGQIGGb3AcAhYhhGj7HII0Vra+vJu95V09oa\nR0xMGrGxCaEuS0RERGRUGt6hFIH6y5y6890AREZGMmPGl/jSlzL57LPP+Oijw1RVebDZUklMnIzV\nqtMoIiIiMtop0Z0Cq9VKSkoKKSkpNDQ0nLxYrxSPJ5m4uDQiI6NDXaKIiIiInCYF49MUFxfH3Llx\nzJrVQUVFFR9++B6VlRFERqYRHz9pwFPZiYiIiMjIoGAcpLCwMM44YyqZmVOora3lk08qOHbsMBZL\nComJqbpZiIiIiMgooWA8SAzDYNKkSUyaNIm5c0/w6aeVfPzx32hvTyA2No2YmLhQlygiIiIi/VAw\nHgLR0dHMmjWds846k+rqaj788ACVlQbh4WnExzuwWq2hLlFEREREulEwHkJWq5W0tDTS0tI4fvw4\nhw9XcOTIUTweB/HxqURERIW6RBERERE5ScF4mCQkJJCdncC557ZTXl7JBx/8L3V10URHpzFhQpIu\n1hMREREJMQXjYRYeHs6XvnQGZ5wxlX/84x98/PExKisPYbOlkpCQgs1mD3WJIiIiIuOSgnGIWCwW\nHA4HDoeDpqYmSksrOXDgLZzOicTFpREVFRvqEkVERETGFQXjESA2NpZzzz2LmTPPpKqqmg8//JDK\nShsREWnExydjsVhCXaKIiIjImKdgPILY7XamTMkgIyOduro6Dh2q5OjRwxhGCgkJqYSFRYS6RBER\nEZExS8F4BDIMg6SkJJKSkpg9u5Wysko+/PBtamsnEBOTxoQJiaEuUURERGTMUTAe4SIjI5kx40tM\nm3YGNTU1fPTRESorD2K3p5GQ4NDFeiIiIiKDRMF4lLBYLKSkpJCSkkJDQwOlpZUcOlSK0xkBxBMZ\nGU90dJyCsoiIiMhpUjAeheLi4pgzJ47Zs02ampqor6+nqqqKioqP6egIB+KJiIgnJiZeQVlERERk\ngIIKxnV1dVx77bV8+umnZGZm8txzzxEfHx/QpqysjBtvvJHPPvsMwzC46aabuPXWW4MqWrwMw2DC\nhAlMmDCBKVPANE2am5upr6+nsrKaiooDAUE5OjoOuz0s1GWLiIiIjEiGaZrm6e78k5/8hIkTJ/KT\nn/yEBx54gOPHj3P//fcHtKmurqa6upq5c+fS3NzMP/3TP/HHP/6RrKyswEIMgyBKkV50DcpVVQ1U\nVNTT3h6GaXb2KCsoi4iIyHCrrj7KRRdZmDp16rAfu7/MGVQwnjlzJnv37sXhcFBdXU1OTg4ff/xx\nv/t885vf5Ic//CGXX375gIuUwWGaJidOnDjZo1xPZWUDbW12IJ7wcG+PclhYeKjLFBERkTFupAbj\noIZS1NTU4HA4AHA4HNTU1PTbvrS0lHfffZcLL7wwmMPKaTIMg5iYGGJiYkhPTwfw9yhXV/+DioqD\n1NXZME1vUI6JiVdQFhERkXHjC4PxggULqK6u7rF948aNAeuGYWAYRp/v09zczNKlS3nkkUeIiYnp\ntc369ev9yzk5OeTk5HxReRKkrkE5Oxt/j3JVVS0VFYeoq7MB8YSFxRMTE6ebjIiIiMioUlxcTHFx\n8YDaBj2Uori4mMmTJ1NVVcVll13W61AKp9PJ17/+da688krWrl3beyEaSjEi+YJyTU0D5eX1tLRY\nuvUoKyiLiIjIqRmTQylyc3PJz8/njjvuID8/n29+85s92pimyapVq5g1a1afoVhGrujoaKKjo0lL\nS+O886ClpeXk0Is6ysuPUFdnobNHWUFZRERERq+geozr6uq45pprOHbsWMB0bZWVlaxevZpdu3bx\n+uuvc+mllzJ79mz/UItNmzaxePHiwELUYzwqtbS00NDQQE1NPeXl9TQ1gWHEY7d7g3J4eGSoSxQR\nEZERZqT2GAcVjAeTgvHY0NraenLoRc+gHB0dR0REVKhLFBERkRAbqcFYd76TQRUZGUlkZCQpKSnM\nnesNyg0NDXz2WT3l5Z9SVeXBMOIxjBjCwyMJD48kLCwCq1V/FUVERCS0lEZkSPmC8uTJk5k9G9ra\n2qivr6ex8QT19Y00NrZx/HgrLpcFw4jENCMxjAjs9kjCwryhWVPGiYiIyHBQMJZhFRERweTJk5k8\nOXB7R0cHbW1ttLa20tLSSmNjPfX1VTQ0tFJX5wK8gdk0I7FavYHZ19tssVhC8llERERkbFEwlhEh\nLCyMsLAwJkyY0OM1t9vtD81tbW00NrbQ0PA5DQ1t1Na24fHYA3qbw8I6h2jYbPYQfBoREREZjRSM\nZcSzWq3+aeO6M02T9vZ2f3A+caKVhoZa6utbaWxspb2dk6E5Aog8OUTD29tst4f3e1MaERERGV8U\njGVUMwyDiIgIIiIiiI+P7/G6y+WitbXV39vc0NBIfX3NybHNHZhmuL+32WLxDc/wXRBoDcEnEhER\nkVBRMJYxzWazERsbS2xsbI/XPB4PbW1t/t7m5mbvDBr19a0cP96Gy2UN6G32BWa7PQybza6ZNERE\nRMYY/WSXcctisRAVFUVUVO9zK3d0dPh7m1tb26ivr6OhoZXWVicNDU46OtyAHbBjGHZM0/vsXbed\nDM92bLbOh8K0iIjIyKWf0iJ98F0QGBcX1+vrpmnidDp7PFwuF21tHbS2nqC11Ulrq5O2tsAw7QvQ\npmnDF64tFrvCtIiISAjpJ67IaTIMwx+eB8oXpl0uV49A3VuYbmpy0dbmwvtPtbNnumeYtgUEaqvV\npgsLRURETpGCscgwOt0w3VuQ9oXp9vYWf5hubXXS3OzsEaY7e6etgAWwYhgWLBYLFkvgssViObne\nuWy1drYREREZqxSMRUY4wzCw2+3Y7QOfk7l7mPYtu91uPB4Pbrcbl8uFy+XB5fLgdLr9yy5X38tu\nt4k3WPse3sDsWwYLptm53HX7QIN316CuXm8RERlOCsYiY9DphOmB8gVrj8cz4GVvwHbhdAaGbafT\njdvduex9vXO7aRp0BmwDw7Cc3GacDM3e7Z2Pztd9j6779LbeGcC97+l9WLosB6772nl7zwe6j4iI\njAYKxiJySry9usMzpMI0TX/ANk0T0zQDlk9nves2b3D3hnC328TjMU8eM3Dd4zFxuTz+ZY/H28a3\n7Ft3u80ubTrXvSEcOsO5gWkObN0Xxrvu39d6118aBvr+fa0DPX4Z6Lre9fXe29Drfqf33iIiw0PB\nWERGLMMwsNlG/39T3nBMQDgfqeudv0gQEPx9vyT09lrXXxh8r3fd1t++fb3u27/zF4vO4Nw1xAd+\nO9D1F4qu3yZ0LnuH+nT/5qDntq7fJPiWA78V6G9b53LXbxY0Rl9k5Bv9P3FEREa4rr2kcur6C/Td\nH11f7/rNwEC2dX6L4MHtdvm/Nej67YDvmwOXy+MP7r5l37cEvnZdX/d9E9E9rHcP6N6/I50XyQaO\n2feN17f6x+j7xuR3jtO3dhnPb9VYfZFTdNrBuK6ujmuvvZZPP/2UzMxMnnvuuV5vyQvgdrvJzs4m\nPT2dF1544bSLFRGR8WcsDakYaGh3u90BF8t2fe7o6OgyLt8dcAGtb3x+W5v32el009lT7g3WhtE1\naHvDt2EEhvCugbv/8O1rOzb+fEROOxjff//9LFiwgJ/85Cc88MAD3H///dx///29tn3kkUeYNWsW\nTU1Np12oiIjIaOcL+cM5rKL7BbG9PfcXvnsL4X2Fb8OwYZpWDMM7PWTnNJHeZ6vVhsXS+7PVatUN\njSTkTvtv4M6dO9m7dy8Ay5cvJycnp9dgXF5ezu7du7nzzjv5z//8z9OvVERERE6Z74LZoRyv3zkD\njcs/HWRvz21tbTidbtraXDidbtrbA587Otwne687wzV4w7YvXMMXh2v1YsvpOu1/JTU1NTgcDgAc\nDgc1NTW9trvtttt46KGHaGxsPN1DiYiIyAg2mOG7c571vkN2R4f35kYdHT3DdXOz97lzaIitR8j2\n9WxbLF1Dtc1/51Cbza5wPU71+zd4wYIFVFdX99i+cePGgPW+xn+9+OKLJCcnM2/ePIqLi4OrVERE\nRMY8b6+vlfDw8KDexzdEpGug7h6y29s7/OG6vd1Fa6uTjg4XDQ3Ok73XNkzTF6x9dxC1AzasVvvJ\nQG0PCNXeHmvNQDJa9RuMX3nllT5fczgcVFdXM3nyZKqqqkhOTu7R5s0332Tnzp3s3r2btrY2Ghsb\nufHGG9m+fXuv77l+/Xr/ck5ODjk5OQP7FCIiIiJd+AJ2WFjYae3vu4Oo79H1LqIul4vW1jba2120\ntTlpa/M+t7S46Ohw4XYbeHuqvSHaNO0B6917pzsDtnUQz4D4FBcXD7iD1jB989ucop/85CckJSVx\nxx13cP/991NfX9/nxXcAe/fu5Re/+EWfs1J45588rVJERERERgxfr3T3MO10enuk29q8vdO+YO3r\nrXa5PPh6pDtDdc9e6u6h2mYb/LucDrXq6qNcdJGFqVOnDvux+8ucpz0Y6Kc//SnXXHMNjz32mH+6\nNoDKykpWr17Nrl27ei1EREREZCw73eEgpmn6Q3T3QO10umhtbfGHaG+o9i63tbnwRjo7hmE/2UNt\nxzDCsFjsWK12bLbOh3qn+3baPcaDTT3GIiIiIqfON+zDG6ADH21tTk6c6KC11XkyRDtP9k6b+IK0\nd/y09xl6D9LeCxIHb+z0mOsxFhEREZHQMwwDu92O3T7wIRUej6fXIO10OmlpaekRpBsanCfHTgeG\nacMIA3qGaN8wj9E2WkDBWERERGScsVgshIeHn9JwD7fb3WuQ7uhwcuJEa0CQbm7ue4gH2GlubgQS\nhubDBUHBWERERES+kG/sdERExIDa9z/EI5bExMQhrvjUaYyxiIiIiIwb/WVOzUAtIiIiIoKCsYiI\niIgIoGAsIiIiIgIoGA/4FoEyuHTeQ0PnffjpnIeGznto6LwPP53zwaVgrL9QIaHzHho678NP5zw0\ndN5DQ+d9+OmcD65xH4xFREREREDBWEREREQEGEHzGOfk5LB3795QlyEiIiIiY9j8+fP7HIIyYoKx\niIiIiEgoaSiFiIiIiAgKxiIiIiIigIKxiIiIiAgwzoNxYWEhM2fOZPr06TzwwAOhLmdcKCsr47LL\nLuPss8/mnHPO4Ze//GWoSxo33G438+bN4xvf+EaoSxk36uvrWbp0KVlZWcyaNYt9+/aFuqQxb9Om\nTZx99tmce+65XH/99bS3t4e6pDFp5cqVOBwOzj33XP+2uro6FixYwIwZM1i4cCH19fUhrHBs6u28\n/+u//itZWVnMmTOHq6++moaGhhBWOPqN22DsdrtZs2YNhYWFfPjhhzz99NN89NFHoS5rzLPb7Tz8\n8MN88MEH7Nu3j1//+tc678PkkUceYdasWRiGEepSxo0f/ehHLFmyhI8++oj33nuPrKysUJc0ppWW\nlrJ161beeecd3n//fdxuN88880yoyxqTVqxYQWFhYcC2+++/nwULFvDJJ59w+eWXc//994eourGr\nt/O+cOFCPvjgA/bv38+MGTPYtGlTiKobG8ZtMC4pKWHatGlkZmZit9tZtmwZO3bsCHVZY97kyZOZ\nO3cuADExMWRlZVFZWRniqsa+8vJydu/ezfe+9z00Ec3waGho4LXXXmPlypUA2Gw24uLiQlzV2DZh\nwgTsdjstLS24XC5aWlpIS0sLdVlj0iWXXEJCQkLAtp07d7J8+XIAli9fzh//+MdQlDam9XbeFyxY\ngMXijXMXXngh5eXloShtzBi3wbiiooKMjAz/enp6OhUVFSGsaPwpLS3l3Xff5cILLwx1KWPebbfd\nxkMPPeT/z1OG3tGjR5k0aRIrVqzgvPPOY/Xq1bS0tIS6rDEtMTGRH//4x0yZMoXU1FTi4+O54oor\nQl3WuFFTU4PD4QDA4XBQU1MT4orGn9/97ncsWbIk1GWMauP2p6S+Tg6t5uZmli5dyiOPPEJMTEyo\nyxnTXnzxRZKTk5k3b556i4eRy+XinXfe4Qc/+AHvvPMO0dHR+mp5iB0+fJj/+q//orS0lMrKSpqb\nm3nyySdDXda4ZBiGfs4Os40bNxIWFsb1118f6lJGtXEbjNPS0igrK/Ovl5WVkZ6eHsKKxg+n08m3\nvvUtvvOd7/DNb34z1OWMeW+++SY7d+7kjDPO4LrrruPVV1/lxhtvDHVZY156ejrp6emcf/75ACxd\nupR33nknxFWNbX//+9+5+OKLSUpKwmazcfXVV/Pmm2+Guqxxw+FwUF1dDUBVVRXJyckhrmj8ePzx\nx9m9e7d+ERwE4zYYZ2dnc/DgQUpLS+no6ODZZ58lNzc31GWNeaZpsmrVKmbNmsXatWtDXc64cN99\n91FWVsbRo0d55pln+OpXv8r27dtDXdaYN3nyZDIyMvjkk08A2LNnD2effXaIqxrbZs6cyb59+2ht\nbcU0Tfbs2cOsWbNCXda4kZubS35+PgD5+fnq+BgmhYWFPPTQQ+zYsYOIiIhQlzPqjdtgbLPZePTR\nR1m0aBGzZs3i2muv1RXjw+CNN97giSee4M9//jPz5s1j3rx5Pa6wlaGlrzeHz69+9Su+/e1vM2fO\nHN577z3WrVsX6pLGtDlz5nDjjTeSnZ3N7NmzAbjppptCXNXYdN1113HxxRdz4MABMjIy2LZtGz/9\n6U955ZVXmDFjBq+++io//elPQ13mmNP9vP/ud7/jhz/8Ic3NzSxYsIB58+bxgx/8INRljmqGqUGH\nIiIiIiLjt8dYRERERKQrBWMRERERERSMRUREREQABWMREREREUDBWEREREQEUDAWEREREQEUjEVE\nREREAAVjERERERFAwVhEREREBFAwFhEREREBFIxFRERERAAFYxERERERQMFYRERERARQMBYR6VVs\nbCylpaVf2K60tBSLxYLH4xn6okawxx9/nEsuueS091+yZAm///3vB7EiEZFTp2AsIqNSZmYmUVFR\nxMbGMnnyZFasWMGJEydO671ycnJ47LHHArY1NTWRmZk5CJV2HiMxMZGOjo5T2s9isXDkyJFBq2Mk\nWL9+PTfccEPAtt27d/fYJiIy3BSMRWRUMgyDF198kaamJt555x3+/ve/c++9957Se5imicfjwTCM\nIarSq7S0lJKSEpKTk9m5c+cp72+a5hBU1TeXy9Vjm9vtHtYaRERCQcFYREa91NRUFi9ezP/93/9R\nX1/P17/+dZKTk0lMTOQb3/gGFRUV/rY5OTncddddfOUrXyE6Opobb7yR1157jTVr1hAbG8utt94K\nBPbU7tq1i3nz5hEXF8eUKVPYsGHDKdW3fft2rrjiCm644Qby8/MDXuveW911SMKll14KwJw5c4iN\njaWgoACArVu3Mn36dJKSkrjqqquoqqry7//BBx+wYMECkpKSmDx5Mps2bQKgvb2dtWvXkpaWRlpa\nGrfddpu/97q4uJj09HQefPBBUlJSWLlyJRs2bGDp0qXccMMNxMXFkZ+fT0NDA6tWrSI1NZX09HT+\n/d//vc8hJD/60Y+YMmUKcXFxZGdn8/rrrwNQWFjIpk2bePbZZ4mNjWXevHk9zoNpmtx7771kZmbi\ncDhYvnw5jY2NQOfQle3btzN16lQmTZrEfffdd0p/HiIifVEwFpFRy9eTWlZWxksvvcR5552Hx+Nh\n1apVHDt2jGPHjhEZGcmaNWsC9nviiSfYunUrzc3N/iD661//mqamJn75y1/2OE5MTAxPPPEEDQ0N\n7Nq1i9/85jfs2LFjwHVu376da6+9lmuuuYaioiI+++wz/2uGYfTZY/2Xv/wFgPfee4+mpiby8vJ4\n9dVXWbduHQUFBVRVVTF16lSWLVsGeId/XHHFFSxZsoSqqioOHTrE5ZdfDsDGjRspKSlh//797N+/\nn5KSkoAe9pqaGo4fP86xY8fYsmULpmmyc+dO8vLyaGho4Prrr+e73/0uYWFhHD58mHfffZeXX36Z\n3/72t73WfsEFF7B//36OHz/O9ddfT15eHh0dHSxevJh169axbNkympqaePfdd3uch23btpGfn09x\ncTFHjhyhubm5x5/hG2+8wSeffMKf/vQn7rnnHj7++OMB/3mIiPRFwVhERiXTNPnmN79JQkICl1xy\nCTk5Oaxbt47ExET++Z//mYiICGJiYli3bh179+7172cYBt/97nfJysrCYrFgs9n879eX+fPnc/bZ\nZwNw7rnnsmzZsoD37M/rr79ORUUFubm5TJ8+nVmzZvHUU0+d9ud+8sknWbVqFXPnziUsLIxNmzbx\n17/+lU8//ZQXX3yR1NRUbrvtNsLCwoiJieGCCy4A4KmnnuJnP/sZEydOZOLEidx9990BF7tZLBY2\nbNiA3W4nIiICgIsvvpjc3FwAGhoaeOmll3j44YeJjIxk0qRJrF27lmeeeabXOr/97W+TkJCAxWLh\n9ttvp729nQMHDgDec93f+X7yySf58Y9/TGZmJtHR0WzatIlnnnkmoHf67rvvJjw8nNmzZzNnzhz2\n799/2udURMTHFuoCREROh2EY7Nixg69+9asB21taWrjtttsoKiri+PHjADQ3N2Oapr9HMiMjo9f3\n68tbb73FT3/6Uz744AM6Ojpob2/nmmuuGVCd+fn5LFy4kNjYWADy8vLIz89n7dq1A9q/u6qqKrKz\ns/3r0dHRJCUlUVFRQXl5OWeeeWav+1VWVjJ16lT/+pQpU6isrPSvT5o0ibCwsIB90tPT/cuffvop\nTqeTlJQU/zaPx8OUKVN6Pd4vfvELfve731FZWYlhGDQ2NlJbWzvgz9i9VpfLRU1NjX/b5MmT/ctR\nUVGnfeGliEhXCsYiMqb8x3/8B5988on/Yrf//d//5bzzzgsIxt1D8BddfHf99ddz6623UlRURFhY\nGLfddtuAQl5rayvPPfccHo/HHyjb29upr6/nvffeY/bs2URHRweEuurq6n7fMzU1NWAauRMnTvD5\n55+Tnp5ORkZGnz24vv2ysrIAOHbsGKmpqf7XezsnXbdlZGQQHh7O559/jsXS/5eNr732Gg899BCv\nvvqqv6c9MTHR30v8Ree7+2c8duwYNpsNh8PBsWPH+t1XRCQYGkohImNKc3MzkZGRxMXFUVdX1+uF\nct2/xnc4HBw+fLjf90xISCAsLIySkhKeeuqpAc1k8cc//hGbzcZHH33kH9v70Ucfcckll7B9+3YA\n5s6dyx/+8AdaW1s5dOhQj2njutd23XXXsW3bNvbv3097ezvr1q3jy1/+MlOmTOFrX/saVVVVPPLI\nI7S3t9PU1ERJSYl/v3vvvZfa2lpqa2u55557+p0erfs5SklJYeHChdx+++00NTXh8Xg4fPiwfxx0\nV01NTdhsNiZOnEhHRwf33HOP/+I58Pb2lpaW9jmc4rrrruPhhx+mtLSU5uZm/5jk/gL5cM/cISJj\nk4KxiIwpa9eupbW1lYkTJ3LxxRdz5ZVXfmEP8Y9+9COef/55EhMTex3i8N///d/87Gc/Y8KECfz8\n5z/n2muv7ff9fLZv387KlStJT08nOTmZ5ORkHA4Ha9as4amnnsLj8fjHAzscDlasWMF3vvOdgPdb\nv349y5cvJyEhgeeff57LL7+cn//853zrW98iNTWVo0eP+nuJY2NjeeWVV3jhhRdISUlhxowZFBcX\nA3DXXXeRnZ3N7NmzmT17NtnZ2dx11119fobeLgrcvn07HR0dzJo1i8TERPLy8vw93F3bL168mMWL\nFzNjxgwyMzOJjIwMGHKRl5cHQFJSUsCwEJ+VK1dyww03cOmll3LmmWcSFRXFr371q37P91BPuSci\n44Nh6tdsERERERH1GIuIiIiIgIKxiIiIiAigYCwiIiIiAoyg6dpycnIGPGG+iIiIiMjpmD9/vv/C\n5O5GTI/x3r17/XdDGs7H3XffHZLjjveHzrvO+3h56JzrvI+nh867zvloePTXETtigrGIiIiISCgp\nGIuIiIiIoGBMTk5OqEsYl3TeQ0PnffjpnIeGznto6LwPP53zwRX0DT5WrlzJrl27SE5O5v333++1\nza233spLL71EVFQUjz/+OPPmzetZiGEQZCkiIiIiIv3qL3MG3WO8YsUKCgsL+3x99+7dHDp0iIMH\nD7Jlyxa+//3vB3vIQVFQUMTChetYuHAdBQVFoS5HREREREIs6OnaLrnkEkpLS/t8fefOnSxfvhyA\nCy+8kPr6empqanA4HMEe+rQVFBRxyy1V1NVtBODtt/MxjCKWLl0UsppEREREJLSGfIxxRUUFGRkZ\n/vX09HTKy8uH+rD92rp1L3V1ywEDMKirW86WLZpDWURERGQ8G5YbfHQfx2EYRq/t1q9f71/OycnR\ngHIRERERCUpxcXGfN/TobsiDcVpaGmVlZf718vJy0tLSem3bNRgPpdWr5/P22/kne40hMTGfm26a\nPyzHFhEREZHh072zdcOGDX22HfKhFLm5uWzfvh2Affv2ER8fH9LxxQB5eYvYvDmFBQvuBLLZvDlF\n48A4azQAABofSURBVItFRERExrmgp2u77rrr2Lt3L7W1tTgcDjZs2IDT6QTg5ptvBmDNmjUUFhYS\nHR3Ntm3bOO+883oWEqLp2jRNnIiIiMj40V/2CzoYDxYFYxEREREZakM6j7GIiIiIyFigYCwiIiIi\ngoKxiIiIiAigYCwiIiIiAigYi4iIiIgACsYiIiIiIoCCsYiIiIgIoGAsIiIiIgIoGI9KBQVFLFy4\njoUL11FQUBTqckRERETGBFuoC5BTU1BQxC23VFFXtxGAt9/OxzCKWLp0UYgrExERERnd1GM8ymzd\nupe6uuWAARjU1S1ny5a9oS5LREREZNRTMBYRERERQcF41Fm9ej6JifmACZgkJuZz003zQ12WiIiI\nyKinYDzK5OUtYvPmFBYsuBPIZvPmFI0vFhERERkEhmmaZqiLADAMg1CUEqrjDobRXLuIiIhIKPSX\nn9RjLCIiIiLCIATjwsJCZs6cyfTp03nggQd6vF5bW8vixYuZO3cu55xzDo8//niwhxQRERERGXRB\nDaVwu92cddZZ7Nmzh7S0NM4//3yefvppsrKy/G3Wr19Pe3s7mzZtora2lrPOOoua/9/e/QZHVd99\nH3+vk3QuK1QMSsBsnGgTTIKC8Y6l6lQWbRKEMfWG2KJ1zGAMqGNbtFcrxSfhARBKby2KDwJXtfFP\nEeO0hApNCuIyVRpTxZEOUkgdM4bwZ8ZJo3DRFt3u/QCbGsP/TXKym/drhpls+CW/D2eS5ZOT7zl7\n8CBpab1voewoxZlL5uySJElBGLBRitbWVnJzc8nJySE9PZ3Zs2fT2NjYa824ceP4+OOPAfj4448Z\nPXp0n1IsSZIkBS2hhtrZ2Ul2dnbP43A4zBtvvNFrTXV1NTfeeCMXX3wxhw4d4sUXX0xkS0mSJGlA\nJFSMQ6HQKdcsWbKEq666img0ynvvvUdJSQnvvPMOI0eO7LO2pqam5+1IJEIkEkkkniRJkoa5aDRK\nNBo9rbUJFeOsrCw6Ojp6Hnd0dBAOh3ut2bZtG4888ggAX/3qV7n00kvZvXs3xcXFfT7f54uxJEmS\nlKgvnmxdtGjRCdcmNGNcXFxMW1sb7e3tHD16lLVr11JeXt5rTX5+Pps3bwbg4MGD7N69m8suuyyR\nbSVJkqR+l9AZ47S0NFauXElZWRmxWIyqqioKCgqoq6sDYN68eSxcuJA5c+YwadIk/vWvf/HTn/6U\njIyMfgkvSZIk9Rdf+S6Jb3mWzNklSZKC4CvfSZIkSadgMZYkSZKwGEuSJEmAxViSJEkCLMaSJEkS\nYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmS\nAIuxJEmSBFiMJUmSJKAfinFTUxP5+fnk5eWxbNmy466JRqMUFRVxxRVXEIlEEt1SkiRJ6neheDwe\nP9sPjsViXH755WzevJmsrCyuueYa1qxZQ0FBQc+a7u5urr/+epqbmwmHw3z44YdceOGFfYOEQiQQ\n5awFtW9/SObskiRJQThZf0rojHFrayu5ubnk5OSQnp7O7NmzaWxs7LXmV7/6FbNmzSIcDgMctxRL\nkiRJQUuoGHd2dpKdnd3zOBwO09nZ2WtNW1sbXV1dTJ06leLiYp599tlEtpQkSZIGRFoiHxwKhU65\n5pNPPmH79u288sorHDlyhGuvvZavf/3r5OXl9VlbU1PT83YkEnEeWZIkSQmJRqNEo9HTWptQMc7K\nyqKjo6PncUdHR8/IxL9lZ2dz4YUXcu6553Luuedyww038M4775yyGEuSJEmJ+uLJ1kWLFp1wbUKj\nFMXFxbS1tdHe3s7Ro0dZu3Yt5eXlvdZ861vf4rXXXiMWi3HkyBHeeOMNCgsLE9lWkiRJ6ncJnTFO\nS0tj5cqVlJWVEYvFqKqqoqCggLq6OgDmzZtHfn4+06ZNY+LEiZxzzjlUV1dbjCVJkjTkJHS7tv7k\n7drOXDJnlyRJCsKA3a5NkiRJShUWY0mSJAmLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJ\ngMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJ\nAvqhGDc1NZGfn09eXh7Lli074bo//elPpKWl8etf/zrRLSVJkqR+l1AxjsViPPDAAzQ1NfHuu++y\nZs0adu3addx1Dz/8MNOmTSMejyeypSRJkjQgEirGra2t5ObmkpOTQ3p6OrNnz6axsbHPuieeeIKK\nigouuuiiRLaTJEmSBkxCxbizs5Ps7Oyex+FwmM7Ozj5rGhsbue+++wAIhUKJbClJkiQNiLREPvh0\nSu78+fOpra0lFAoRj8dPOkpRU1PT83YkEiESiSQST5IkScNcNBolGo2e1tpQPIGh35aWFmpqamhq\nagJg6dKlnHPOOTz88MM9ay677LKeMvzhhx/y5S9/mdWrV1NeXt47yGfFebAFtW9/SObskiRJQThZ\nf0qoGH/66adcfvnlvPLKK1x88cV87WtfY82aNRQUFBx3/Zw5c7jllluYOXPmGYUcSMlcLpM5uyRJ\nUhBO1p8SGqVIS0tj5cqVlJWVEYvFqKqqoqCggLq6OgDmzZuXyKeXJEmSBk1CZ4z7k2eMz1wyZ5ck\nSQrCyfqTr3wnSZIkYTGWJH1BQ0MzpaULKS1dSENDc9BxJGnQJDRjLElKLQ0Nzdx77366uhYD8NZb\n9YRCzVRUlAWcTJIGnmeMJUk9Vq/eSldXJRACQnR1VbJq1dagY0nSoLAYS5IkSViMJUmfU109hYyM\neiAOxMnIqGfu3ClBxxoWnO2Wguft2pL4lmfJnF3S0PXSS82sWrWVTZuaaWhY4nzxIPjPbHclABkZ\n9dTVjfPYSwNgwF75rj9ZjM9cMmeXNPT5HDN4SksXsmnTYo7NdgPEKSl5hN//fkmQsaSU5H2MJUmS\npFOwGEuSFDBnu6WhwWIsSVLAbrutjLq6cZSUPAIUO18sBcQZ4ySeoUvm7JKGPp9jguFxlwaWM8aS\nJEnSKViMJUmSJCzGkiRJEmAxliRJkoB+KMZNTU3k5+eTl5fHsmXL+vz9888/z6RJk5g4cSLXX389\nO3bsSHRLSZIkqd8ldFeKWCzG5ZdfzubNm8nKyuKaa65hzZo1FBQU9Kz54x//SGFhIeeffz5NTU3U\n1NTQ0tLSN4h3pThjyZxd0tCXjM8xDQ3NrF69FTh2b+Dbbku+W54l43GXksnJvsfSEvnEra2t5Obm\nkpOTA8Ds2bNpbGzsVYyvvfbanrcnT57M3r17E9lSkqTjamho5t5799PVtRiAt96qJxRq9n7Akk5b\nQqMUnZ2dZGdn9zwOh8N0dnaecP0vfvELpk+fnsiWkiQd1+rVW+nqqgRCQIiurkpWrdoadCxJSSSh\nM8ahUOi017766qs89dRTvP766ydcU1NT0/N2JBIhEokkkE6SJEnDXTQaJRqNntbahIpxVlYWHR0d\nPY87OjoIh8N91u3YsYPq6mqampq44IILTvj5Pl+MJUk6E9XVU3jrrfrPzhpDRkY9c+dOCTiVpKB9\n8WTrokWLTrg2oVGK4uJi2traaG9v5+jRo6xdu5by8vJeaz744ANmzpzJc889R25ubiLbSRpmGhqa\nKS1dSGnpQhoamoOOc0aSOXuyuu22MurqxlFS8ghQTF3dOOeLJZ2RhO5KAfC73/2O+fPnE4vFqKqq\n4ic/+Ql1dXUAzJs3j3vuuYff/OY3XHLJJQCkp6fT2traN4h3pThjyZxdOpX/XEj1n7N/yVJ0kjn7\n5yXzc4zZlepS4Q4sQTnZ91jCxbi/WIzPXDJnl06ltHQhmzYt5tiFVABxSkoe4fe/XxJkrNOSzNk/\nL5mfY8yuVJYqP3wH5WTfY77ynSRJUhLxDiwDJ6GL71LFCy9Eg45w1pI5u3QyhYWj2bbtf/jf/70H\ngPPO+x8KC0cnxdd8Mmf/omTM/G9mV6o6cKDruO9Ltq+bUaPSmTbt+qBj9GIxBsaOjQQd4awlc3bp\nZG69NcKoUc1s2PAIb77ZzH//9xIikeT4NWEyZ/+iZH6OMbtS1cyZ/6S9vZ5Dh46NUowcWc/Mmf83\n6b5uDhyIBh2hD4uxpCErEikjEilj6tSlSVcskzm7NFxEo81s2HBsBGHGjClJ8716LOd/fvh+6KHk\n/eF7qLEYS5KkYScabebRR/dz6NCxlxDfvbseaE6agukP3wPDi+8kSdKws2HD1s9GEY5dwHboUGXP\n2WMNXxZjSZIkCYuxJEkahmbMmMLIkfVAHIgzcmQ9M2b4EuLDncVYkiQNO5FIGQ89NI7i4mMvIf7Q\nQ+Oc1ZXFWJIkDU+RSBnLly8BtluKBViMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaS\nJEkS0A/FuKmpifz8fPLy8li2bNlx13z/+98nLy+PSZMm8fbbbye6pSRJktTvEirGsViMBx54gKam\nJt59913WrFnDrl27eq3ZuHEjf/3rX2lra2PVqlXcd999CQWWJEmSBkJCxbi1tZXc3FxycnJIT09n\n9uzZNDY29lqzfv16KisrAZg8eTLd3d0cPHgwkW0lSZKkfpdQMe7s7CQ7O7vncTgcprOz85Rr9u7d\nm8i2kiRJUr9LS+SDQ6HQaa2Lx+On9XGhUM3nHkU++zPQ4kydOgjbDIhkzi6diWT+Wjd7MMyuM5HM\nxzyZs0e4/fbB2Cf62Z9TS6gYZ2Vl0dHR0fO4o6ODcDh80jV79+4lKyvruJ8vHq9JJM5ZeeGFKGPH\nRgZ93+Fu6tQQr74aP/XCIcjsknR8PsfoTEydGupz8nRgRPj8ydZQaNEJVyY0SlFcXExbWxvt7e0c\nPXqUtWvXUl5e3mtNeXk5zzzzDAAtLS2MGjWKzMzMRLaVJEmS+l1CZ4zT0tJYuXIlZWVlxGIxqqqq\nKCgooK6uDoB58+Yxffp0Nm7cSG5uLueddx5PP/10vwSXJEmS+lNCxRjg5ptv5uabb+71vnnz5vV6\nvHLlykS3UYqIRpvZsGErcDXRaDORSFnQkSRJkgBf+U6DKBpt5tFH9/Pmm4uBN3n00f1Eo81Bx5Ik\nSQIsxhpEGzZs5dChSiAEhDh0qPKzs8eSJEnBsxhLkiRJWIw1iGbMmMLIkfVAHIgzcmQ9M2ZMCTqW\nJEkS0A8X30mn69iFds1s2PAIcKwoe/GdJCU/L6xWqrAYa1BFImU+YUpSCvn3hdWHDi0GFvPoo/WA\n5VjJyVEKSZJ01rywWqnEYixJkiRhMZYkSQnwwmqlEmeMJUnSWfPCaqUSi7EkSUqIF1YrVThKIUmS\nJGExliRJkgCLsSRJkgQ4Y8yoUekcOBANOoaSQEvLW2zZ0gZczbp1/4+vf/3/BB3prPj1LknS8YXi\n8Xg86BAAoVCIIRJF6qOhoZl7791PV1clABkZ9dTVjaOiIrkuNvH7TJI0VAT1f9LJ9k1olKKrq4uS\nkhLGjx9PaWkp3d3dfdZ0dHQwdepUJkyYwBVXXMHjjz+eyJZSIFav3vpZKT72yk5dXZWsWuUrO0mS\nlEoSKsa1tbWUlJSwZ88ebrrpJmpra/usSU9P57HHHmPnzp20tLTw5JNPsmvXrkS2lSRJkvpdQsV4\n/fr1VFYe+9VyZWUl69at67Nm7NixXHXVVQCMGDGCgoIC9u3bl8i20qCrrp5CRsZ/XtkpI6OeuXOT\n55WdGhqaKS1dCFxNQ0Nz0HEkSRqSEpoxvuCCC/jb3/4GQDweJyMjo+fx8bS3tzNlyhR27tzJiBEj\negdx9lFD3EsvNfeMT8ydOyVp5otTZT5akpRahuKM8SnvSlFSUsKBAwf6vH/x4sV9NgmFQif8PIcP\nH6aiooIVK1b0KcX/VlNT0/N2JBIhEomcKp40aCoqypKyTB6bj17MsfloPpuPfiQp/y2SJJ2paDRK\nNBo9rbWnLMabNm064d9lZmZy4MABxo4dy/79+xkzZsxx133yySfMmjWLO++8k1tvvfWEn+/zxViS\nJElK1BdPti5atOiEaxOaMS4vL6e+vh6A+vr645beeDxOVVUVhYWFzJ8/P5HtJJ2FZJ+PliRpsCQ0\nY9zV1cW3v/1tPvjgA3JycnjxxRcZNWoU+/bto7q6mg0bNvDaa69xww03MHHixJ5Ri6VLlzJt2rTe\nQZwxlgZMss5HS5JS11CcMfYFPiRJkjTohmIxTmiUQpIkSUoVFmNJkiQJi7EkSZIEWIwlSZIkwGIs\nSZIkARZjSZIkCbAYS5IkSYDFWJIkSQIsxpIkSRJgMZYkSZIAi7EkSZIEWIwlSZIkwGIsSZIkARZj\nSZIkCbAYS5IkSYDFWJIkSQISKMZdXV2UlJQwfvx4SktL6e7uPuHaWCxGUVERt9xyy9luJ0mSJA2o\nsy7GtbW1lJSUsGfPHm666SZqa2tPuHbFihUUFhYSCoXOdjtJkiRpQJ11MV6/fj2VlZUAVFZWsm7d\nuuOu27t3Lxs3buSee+4hHo+f7XaSJEnSgDrrYnzw4EEyMzMByMzM5ODBg8dd9+CDD7J8+XLOOcdx\nZkmSJA1daSf7y5KSEg4cONDn/YsXL+71OBQKHXdM4uWXX2bMmDEUFRURjUZPGaampqbn7UgkQiQS\nOeXHSJIkSScSjUZPq4cChOJnOd+Qn59PNBpl7Nix7N+/n6lTp/KXv/yl15qFCxfy7LPPkpaWxj/+\n8Q8+/vhjZs2axTPPPNM3SCjkqIUkSdIwEVT3O9m+Z12Mf/zjHzN69Ggefvhhamtr6e7uPukFeFu3\nbuVnP/sZv/3tb884pCRJklLLUCzGZz34u2DBAjZt2sT48ePZsmULCxYsAGDfvn3MmDHjhEEkSZKk\noeiszxj3N88YS5IkDR8pdcZYkiRJSiUWY0mSJAmLsSRJkgZRQ0MzpaULgatpaGgOOk4vzhhLkiRp\nUDQ0NHPvvfvp6jr26skZGfXU1Y2joqJs0DI4YyxJkqTArV699bNSHAJCdHVVsmrV1qBj9bAYS5Ik\nSViMJUmSNEiqq6eQkVEPxIE4GRn1zJ07JehYPZwxliRJ0qB56aXmnvGJuXOnDOp8MQzQS0L3N4ux\nJEmSBpoX30mSJEmnMOyLcTQaDTrCsORxD4bHffB5zIPhcQ+Gx33wecz7l8XYL6hAeNyD4XEffB7z\nYHjcg+FxH3we8/417IuxJEmSBBZjSZIkCRhCd6WIRCJs3Tp0XvlEkiRJqWfKlCknHEEZMsVYkiRJ\nCpKjFJIkSRIWY0mSJAmwGEuSJEnAMC/GTU1N5Ofnk5eXx7Jly4KOMyx0dHQwdepUJkyYwBVXXMHj\njz8edKRhIxaLUVRUxC233BJ0lGGju7ubiooKCgoKKCwspKWlJehIKW/p0qVMmDCBK6+8kjvuuIN/\n/vOfQUdKSXfffTeZmZlceeWVPe/r6uqipKSE8ePHU1paSnd3d4AJU9PxjvuPfvQjCgoKmDRpEjNn\nzuSjjz4KMGHyG7bFOBaL8cADD9DU1MS7777LmjVr2LVrV9CxUl56ejqPPfYYO3fupKWlhSeffNLj\nPkhWrFhBYWEhoVAo6CjDxg9+8AOmT5/Orl272LFjBwUFBUFHSmnt7e2sXr2a7du38+c//5lYLMYL\nL7wQdKyUNGfOHJqamnq9r7a2lpKSEvbs2cNNN91EbW1tQOlS1/GOe2lpKTt37uSdd95h/PjxLF26\nNKB0qWHYFuPW1lZyc3PJyckhPT2d2bNn09jYGHSslDd27FiuuuoqAEaMGEFBQQH79u0LOFXq27t3\nLxs3buSee+7BG9EMjo8++og//OEP3H333QCkpaVx/vnnB5wqtX3lK18hPT2dI0eO8Omnn3LkyBGy\nsrKCjpWSvvGNb3DBBRf0et/69euprKwEoLKyknXr1gURLaUd77iXlJRwzjnH6tzkyZPZu3dvENFS\nxrAtxp2dnWRnZ/c8DofDdHZ2Bpho+Glvb+ftt99m8uTJQUdJeQ8++CDLly/vefLUwHv//fe56KKL\nmDNnDldffTXV1dUcOXIk6FgpLSMjgx/+8IdccsklXHzxxYwaNYpvfvObQccaNg4ePEhmZiYAmZmZ\nHDx4MOBEw89TTz3F9OnTg46R1Ibt/5L+OjlYhw8fpqKighUrVjBixIig46S0l19+mTFjxlBUVOTZ\n4kH06aefsn37du6//362b9/Oeeed56+WB9h7773Hz3/+c9rb29m3bx+HDx/m+eefDzrWsBQKhfx/\ndpAtXryYL33pS9xxxx1BR0lqw7YYZ2Vl0dHR0fO4o6ODcDgcYKLh45NPPmHWrFnceeed3HrrrUHH\nSXnbtm1j/fr1XHrppdx+++1s2bKFu+66K+hYKS8cDhMOh7nmmmsAqKioYPv27QGnSm1vvvkm1113\nHaNHjyYtLY2ZM2eybdu2oGMNG5mZmRw4cACA/fv3M2bMmIATDR+//OUv2bhxoz8I9oNhW4yLi4tp\na2ujvb2do0ePsnbtWsrLy4OOlfLi8ThVVVUUFhYyf/78oOMMC0uWLKGjo4P333+fF154gRtvvJFn\nnnkm6Fgpb+zYsWRnZ7Nnzx4ANm/ezIQJEwJOldry8/NpaWnh73//O/F4nM2bN1NYWBh0rGGjvLyc\n+vp6AOrr6z3xMUiamppYvnw5jY2N/Nd//VfQcZLesC3GaWlprFy5krKyMgoLC/nOd77jFeOD4PXX\nX+e5557j1VdfpaioiKKioj5X2Gpg+evNwfPEE0/w3e9+l0mTJrFjxw4WLlwYdKSUNmnSJO666y6K\ni4uZOHEiAHPnzg04VWq6/fbbue6669i9ezfZ2dk8/fTTLFiwgE2bNjF+/Hi2bNnCggULgo6Zcr54\n3J966im+973vcfjwYUpKSigqKuL+++8POmZSC8UdOpQkSZKG7xljSZIk6fMsxpIkSRIWY0mSJAmw\nGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAPj/GFm2Nq6PXQMAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x48d66d0>" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"4. Arima" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from statsmodels import tsa" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"p=1\n", | |
"d=1\n", | |
"q=1\n", | |
"model1=tsa.arima_model.ARIMA(actdf, [p, d, q],freq='M').fit() #creates model" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model1.summary() #summary Lgo Liklihood, AIC, BIC, HQIC, SD of innovations\n", | |
"#the std error of ar.L.1.D.Units and ma.L.1.D.Units seem quite low, (less than 1)?\n", | |
"#What is going on with Roots table? if it had data what would it be telling us?" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<table class=\"simpletable\">\n", | |
"<caption>ARIMA Model Results</caption>\n", | |
"<tr>\n", | |
" <th>Dep. Variable:</th> <td>D.Units</td> <th> No. Observations: </th> <td>160</td> \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>Model:</th> <td>ARIMA(1, 1, 1)</td> <th> Log Likelihood </th> <td>-1216.771</td>\n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>Method:</th> <td>css-mle</td> <th> S.D. of innovations</th> <td>485.839</td> \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>Date:</th> <td>Mon, 18 Nov 2013</td> <th> AIC </th> <td>2441.542</td> \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>Time:</th> <td>10:31:51</td> <th> BIC </th> <td>2453.842</td> \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>Sample:</th> <td>08-01-2013</td> <th> HQIC </th> <td>2446.537</td> \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th></th> <td>- 05-01-2000</td> <th> </th> <td> </td> \n", | |
"</tr>\n", | |
"</table>\n", | |
"<table class=\"simpletable\">\n", | |
"<tr>\n", | |
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[95.0% Conf. Int.]</th> \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>const</th> <td> -2.8504</td> <td> 39.739</td> <td> -0.072</td> <td> 0.943</td> <td> -80.738 75.037</td>\n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>ar.L1.D.Units</th> <td> 0.3665</td> <td> 0.526</td> <td> 0.697</td> <td> 0.487</td> <td> -0.665 1.398</td>\n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>ma.L1.D.Units</th> <td> -0.3444</td> <td> 0.526</td> <td> -0.655</td> <td> 0.513</td> <td> -1.375 0.686</td>\n", | |
"</tr>\n", | |
"</table>\n", | |
"<table class=\"simpletable\">\n", | |
"<caption>Roots</caption>\n", | |
"<tr>\n", | |
" <td></td> <th> Real</th> <th> Imaginary</th> <th> Modulus</th> <th> Frequency</th>\n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>AR.1</th> 2.7287 +0.0000j 2.7287 0.0000 \n", | |
"</tr>\n", | |
"<tr>\n", | |
" <th>MA.1</th> 2.9035 +0.0000j 2.9035 0.0000 \n", | |
"</tr>\n", | |
"</table>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": [ | |
"<class 'statsmodels.iolib.summary.Summary'>\n", | |
"\"\"\"\n", | |
" ARIMA Model Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: D.Units No. Observations: 160\n", | |
"Model: ARIMA(1, 1, 1) Log Likelihood -1216.771\n", | |
"Method: css-mle S.D. of innovations 485.839\n", | |
"Date: Mon, 18 Nov 2013 AIC 2441.542\n", | |
"Time: 10:31:51 BIC 2453.842\n", | |
"Sample: 08-01-2013 HQIC 2446.537\n", | |
" - 05-01-2000 \n", | |
"=================================================================================\n", | |
" coef std err z P>|z| [95.0% Conf. Int.]\n", | |
"---------------------------------------------------------------------------------\n", | |
"const -2.8504 39.739 -0.072 0.943 -80.738 75.037\n", | |
"ar.L1.D.Units 0.3665 0.526 0.697 0.487 -0.665 1.398\n", | |
"ma.L1.D.Units -0.3444 0.526 -0.655 0.513 -1.375 0.686\n", | |
" Roots \n", | |
"=============================================================================\n", | |
" Real Imaginary Modulus Frequency\n", | |
"-----------------------------------------------------------------------------\n", | |
"AR.1 2.7287 +0.0000j 2.7287 0.0000\n", | |
"MA.1 2.9035 +0.0000j 2.9035 0.0000\n", | |
"-----------------------------------------------------------------------------\n", | |
"\"\"\"" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#how to use this one?\n", | |
"#tsa.arima_model.ARIMAResults(model1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#Can't seem get a prediction either in or out of sample?\n", | |
"#print model1.predict('2013-1-01', '2013-12-01', dynamic=True, typ='levels') \n", | |
"predict1_units = model1.predict('2012-1-01','2013-12-01', dynamic=True)\n", | |
"print predict1_units" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "ValueError", | |
"evalue": "Wrong number of items passed 23, indices imply 303", | |
"output_type": "pyerr", | |
"traceback": [ | |
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", | |
"\u001b[1;32m<ipython-input-9-a76ec67be707>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m#Can't seem get a prediction either in or out of sample?\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;31m#print model1.predict('2013-1-01', '2013-12-01', dynamic=True, typ='levels')\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mpredict1_units\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'2012-1-01'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'2013-12-01'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdynamic\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mpredict1_units\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/lib/pymodules/python2.7/statsmodels/base/wrapper.pyc\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 88\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobject\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'_results'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 89\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mresults\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 90\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwrap_output\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 91\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 92\u001b[0m \u001b[0margspec\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0minspect\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgetargspec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/lib/pymodules/python2.7/statsmodels/base/data.pyc\u001b[0m in \u001b[0;36mwrap_output\u001b[1;34m(self, obj, how)\u001b[0m\n\u001b[0;32m 262\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mattach_cov\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 263\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mhow\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'dates'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 264\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mattach_dates\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 265\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mhow\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'columns_eq'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 266\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mattach_columns_eq\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/lib/pymodules/python2.7/statsmodels/base/data.pyc\u001b[0m in \u001b[0;36mattach_dates\u001b[1;34m(self, result)\u001b[0m\n\u001b[0;32m 356\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 357\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mattach_dates\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 358\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mTimeSeries\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_dates\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 359\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 360\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_make_endog_names\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mendog\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/local/lib/python2.7/dist-packages/pandas/core/series.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, data, index, dtype, name, copy, fastpath)\u001b[0m\n\u001b[0;32m 215\u001b[0m raise_cast_failure=True)\n\u001b[0;32m 216\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 217\u001b[1;33m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mSingleBlockManager\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfastpath\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 218\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 219\u001b[0m \u001b[0mgeneric\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mNDFrame\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfastpath\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/local/lib/python2.7/dist-packages/pandas/core/internals.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, block, axis, do_integrity_check, fastpath)\u001b[0m\n\u001b[0;32m 3297\u001b[0m \u001b[0mblock\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mblock\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3298\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mBlock\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3299\u001b[1;33m \u001b[0mblock\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmake_block\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mndim\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfastpath\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3300\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3301\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/local/lib/python2.7/dist-packages/pandas/core/internals.pyc\u001b[0m in \u001b[0;36mmake_block\u001b[1;34m(values, items, ref_items, klass, ndim, dtype, fastpath, placement)\u001b[0m\n\u001b[0;32m 1805\u001b[0m \u001b[0mklass\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mObjectBlock\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1806\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1807\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mklass\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mitems\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mref_items\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mndim\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mndim\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfastpath\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfastpath\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mplacement\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mplacement\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1808\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1809\u001b[0m \u001b[1;31m# TODO: flexible with index=None and/or items=None\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/local/lib/python2.7/dist-packages/pandas/core/internals.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, values, items, ref_items, ndim, fastpath, placement)\u001b[0m\n\u001b[0;32m 60\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 61\u001b[0m raise ValueError('Wrong number of items passed %d, indices imply %d'\n\u001b[1;32m---> 62\u001b[1;33m % (len(items), len(values)))\n\u001b[0m\u001b[0;32m 63\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 64\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_ref_locs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mplacement\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;31mValueError\u001b[0m: Wrong number of items passed 23, indices imply 303" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ax = model1.plot(ax=ax, style='r--', label='Dynamic Prediction');\n", | |
"ax.legend();\n", | |
"#ax.axis((-20.0, 38.0, -4.0, 200.0));\n", | |
"ax.plot()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "AttributeError", | |
"evalue": "'ARIMAResults' object has no attribute 'plot'", | |
"output_type": "pyerr", | |
"traceback": [ | |
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[1;32m<ipython-input-10-d5511c4ee826>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0max\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstyle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'r--'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'Dynamic Prediction'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0max\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlegend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m#ax.axis((-20.0, 38.0, -4.0, 200.0));\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0max\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;32m/usr/lib/pymodules/python2.7/statsmodels/base/wrapper.pyc\u001b[0m in \u001b[0;36m__getattribute__\u001b[1;34m(self, attr)\u001b[0m\n\u001b[0;32m 33\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 34\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 35\u001b[1;33m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mattr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 36\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mresults\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 37\u001b[0m \u001b[0mhow\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_wrap_attrs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mattr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | |
"\u001b[1;31mAttributeError\u001b[0m: 'ARIMAResults' object has no attribute 'plot'" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"5. Diff and plot data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#a single order diff yields bank acf and pacf is this right? note the next lot shows that the diffed data \n", | |
"#has no remaing cyclical trend tha I can see\n", | |
"actdf2=actdf.diff()\n", | |
"fig = plt.figure(figsize=(12,8))\n", | |
"ax1 = fig.add_subplot(211)\n", | |
"fig = sm.graphics.tsa.plot_acf(actdf2.values.squeeze(), lags=13, ax=ax1)\n", | |
"ax2 = fig.add_subplot(212)\n", | |
"fig = sm.graphics.tsa.plot_pacf(actdf2, lags=13, ax=ax2)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAHpCAYAAACBevrLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt0VOW9//H3sBIqt0K4BZIJRg9BEoQQTpTWFhwvAaQ1\n9SAooJgCtRQXVdDV6o9aDRRFaruoSk+LtiKpCKjLI6lirEiHesO0hQMeoNw0kgTMOYggEReBML8/\nejrHcImUSTKYvF9rzVqz9zx7P995YIUPT569dyASiUSQJEmSWrhW8S5AkiRJOhsYjCVJkiQMxpIk\nSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSS3KE088wZAhQ874+JEjR/K73/2uASuSpLOHwViSjhMK\nhejcuTM1NTWnfUyrVq149913G7GqpldYWMiECRPq7Fu5cuUJ+ySpuTAYS9JnlJWVUVpaSvfu3Sku\nLv6njm3q5yUdPXr0hH21tbVNWoMkNScGY0n6jKKiIq688komTJjA4sWLo/tDoRC//e1vo9ufXZIw\ndOhQALKzs+nQoQPPPPMMAI899hgZGRl06dKFb33rW+zZsyd6/KZNm8jLy6NLly706NGDuXPnAnD4\n8GGmT59OamoqqampzJgxIzpzHQ6HCQaD/PSnP6Vnz55MmjSJWbNmMXr0aCZMmEDHjh1ZvHgxBw4c\nYPLkyaSkpBAMBvnxj3/MsWPHTvp9b7vtNnr16kXHjh3Jzc3l9ddfB6CkpIS5c+eyfPlyOnToQE5O\nzgnjEIlEmDNnDunp6SQnJ1NQUMDHH38M/P0/GK1ataKoqIhzzz2Xbt26cf/998f4pyNJjeusCMaT\nJk0iOTmZ/v37N8j5RowYQVJSEldfffUJn/3oRz/iggsuICsri0ceeaRB+pPUfBQVFXH99ddz3XXX\n8fLLL/M///M/AAQCAQKBwEmP+dOf/gTAxo0bOXjwIGPGjGH16tXMnDmTZ555hj179nDuuecyduxY\nAA4ePMiVV17JyJEj2bNnDzt27OCKK64A4L777qO0tJQNGzawYcMGSktLmTNnTrSvqqoqPvroI3bt\n2sWjjz5KJBKhuLiYMWPGcODAAcaPH8+3v/1tWrduzc6dO1m/fj1/+MMf+M1vfnPS2i+++GI2bNjA\nRx99xPjx4xkzZgw1NTWMGDGCmTNnMnbsWA4ePMj69etPGIdFixaxePFiwuEw7777LtXV1UybNq3O\n+d944w22bdvGq6++yuzZs/nb3/52pn80ktTozopgPHHiREpKShrsfD/84Q9PenHIokWLqKysZOvW\nrWzevDn6j5QkAbz++utUVlaSn59PRkYGWVlZLFmy5IzOtWTJEiZPnszAgQNp3bo1c+fO5a233uL9\n99/nhRdeICUlhRkzZtC6dWvat2/PxRdfDMBTTz3FPffcQ9euXenatSv33ntvnZ9nrVq1YtasWSQm\nJnLOOecAcMkll5Cfnw/AgQMHeOmll5g/fz5t2rShW7duTJ8+nWXLlp20zhtuuIGkpCRatWrF7bff\nzuHDh9m6dSvw9xnh+paHLFmyhDvuuIP09HTatWvH3LlzWbZsWZ3Z6XvvvZcvfelLDBgwgOzsbDZs\n2HBG4ylJTeGsCMZDhgwhKSmpzr6dO3dy1VVXkZuby9ChQ6M/qE/H5ZdfTvv27U/Y/+tf/5p77rkn\nut2tW7czL1pSs7N48WKGDRtGhw4dABgzZkyd5RT/jH/MEv9Du3bt6NKlC5WVlVRUVHD++eef9Ljd\nu3fXOa5Xr17s3r07ut2tWzdat25d55hgMBh9//7773PkyBF69uxJUlISSUlJfO9734vOfB/vZz/7\nGVlZWXTq1ImkpCQOHDjA3r17z+g79urVi6NHj1JVVRXd16NHj+j7tm3b8sknn5zWuSUpHhLiXcCp\nfPe732XhwoX07t2bt99+m1tuuYVXX301pnPu3LmTZcuW8R//8R9069aNhx9+mN69ezdQxZK+yD79\n9FOefvppjh07Rs+ePYG/r/c9cOAAGzdupF27dnVC3QcffFDv+VJSUigrK4tuf/LJJ3z44YcEg0HS\n0tJOOYP7j+MyMzMB2LVrFykpKdHPj1/OcfwSj7S0NL70pS/x4Ycf0qpV/XMfr732Gg8++CCrV6+m\nX79+AHTu3Dk6S3yqpSOn+o67du0iISGB5ORkdu3aVe+xknQ2OitmjI9XXV3NW2+9xZgxY8jJyeF7\n3/te9B+h5557jv79+5/wuuqqqz73vIcPH6ZNmzb8+c9/5uabb2bSpEmN/VUkfUE8//zzJCQksGXL\nluj63i1btvD1r3+doqIiBg4cyHPPPcenn37Kjh076lyIB5CcnMzOnTuj2+PGjWPRokVs2LCBw4cP\nM3PmTL7yla/Qq1cvvvGNb7Bnzx4eeughDh8+zMGDByktLY0eN2fOHPbu3cvevXuZPXt2vbdHO36p\nQ8+ePRk2bBi33347Bw8e5NixY+zcuTO6DvqzDh48SEJCAl27dqWmpobZs2dHL56Dv8/2lpWVnXI5\nxbhx45g/fz5lZWVUV1dH1yTXF8ib+s4dkvTPOCuD8bFjx+jUqRPr16+PvjZt2gTAqFGjeOedd054\nvfTSS3XOcbKZjmAwyKhRowC45ppr2LhxY+N/GUlfCEVFRUyaNIlgMEj37t3p3r07ycnJTJs2jaee\neiq6Hjg5OZmJEydy44031vk5U1hYSEFBAUlJSTz77LNcccUV/OQnP+Haa68lJSWF9957LzpL3KFD\nB1555RV+//vf07NnT/r06UM4HAbg7rvvJjc3lwEDBjBgwAByc3O5++67o/183ozxP75LTU0NWVlZ\ndO7cmTFjxkQnFz7bfsSIEYwYMYI+ffqQnp5OmzZt6NWrV/Q8Y8aMAaBLly7k5uaeMGaTJk1iwoQJ\nDB06lPPPP5+2bdvWuaj5ZD+HP28WWpLiKRA5S/77XlZWxtVXX80777wDwNe+9jVmzJjB6NGjiUQi\nvPPOOwwYMOC0zxcOh/n5z3/O73//++i+//f//h99+vRh4sSJhMNh7rzzTt5+++0G/y6SJEn64jkr\ngvG4ceNYs2YNe/fuJTk5mdmzZ3PZZZcxdepU9uzZw5EjRxg3blydWZP6DBkyhK1bt1JdXU2XLl14\n/PHHycvL48CBA9xwww3s2rWLDh068Otf/7rBbhEnSZKkL7azIhhLkiRJ8XZWrjGWJEmSmtpZcbu2\nUCjEmjVr4l2GJEmSmrlLL700esHz8c6KGeM1a9ZEn7DU1K977703bn235Jfj7pi3lJfj7pi3lJfj\n7rh/UV71TcaeFcFYkiRJijeDsSRJkoTBmFAoFO8SWiTHvek55vHhuDc9xzw+HPf4cNwb1llxu7ZA\nIMBZUIYkSZKaufpyZ4ufMZYkSZLAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJ\nkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJ\nkgQYjCVJkiTAYCxJkiQBMQbj8vJyLrvsMvr168eFF17Iww8/fNJ2t956KxkZGWRnZ7N+/fpYupQk\nSZIaRUIsBycmJjJ//nwGDhxIdXU1//qv/0peXh6ZmZnRNitXrmTHjh1s376dt99+m6lTp7J27dqY\nC5ckSZIaUkwzxj169GDgwIEAtG/fnszMTHbv3l2nTXFxMQUFBQAMHjyY/fv3U1VVFUu3kiRJUoNr\nsDXGZWVlrF+/nsGDB9fZX1lZSVpaWnQ7GAxSUVHRUN1KkiRJDSKmpRT/UF1dzejRo3nooYdo3779\nCZ9HIpE624FA4IQ2hYWF0fehUIhQKNQQpUmSJKkFC4fDhMPh02obiByfWv9JR44c4Zvf/CZXXXUV\n06dPP+Hz733ve4RCIcaOHQtA3759WbNmDcnJyf9XRCBwQniWJEmSGlp9uTOmpRSRSITJkyeTlZV1\n0lAMkJ+fT1FREQBr166lU6dOdUKxJEmSdDaIacb49ddfZ+jQoQwYMCC6POL+++9n165dAEyZMgWA\nadOmUVJSQrt27Vi0aBGDBg2qW4QzxpIkSWoC9eXOmJdSNASDsSRJkppCoy2lkCRJkpoLg7EkSZKE\nwViSJEkCDMaSJEkSYDCWJEmSAIOxJEmSBBiMJUmSJMBgLEmSJAEGY0mSJAkwGEuSJEmAwViSJEkC\nDMaSJEkSYDCWJEmSAIOxJEmSBBiMJUmSJMBgLEmSJAEGY0mSJAkwGEuSJEmAwViSJEkCDMaSJEkS\nYDCWJEmSAIOxJEmSBBiMJUmSJMBgLEmSJAEGY0mSJAkwGEuSJEmAwViSJEkCDMaSJEkSYDCWJEmS\nAIOxJEmSBBiMJUmSJMBgLEmSJAExBuNJkyaRnJxM//79T/p5OBymY8eO5OTkkJOTw5w5c2LpTpIk\nSWo0CbEcPHHiRL7//e9z0003nbLNpZdeSnFxcSzdSJIkSY0uphnjIUOGkJSUVG+bSCQSSxeSJElS\nk2jUNcaBQIA333yT7OxsRo4cyebNmxuzO0mSJOmMxbSU4vMMGjSI8vJy2rZty0svvcQ111zDtm3b\nTtq2sLAw+j4UChEKhRqzNEmSJLUA4XCYcDh8Wm0DkRjXOpSVlXH11VfzzjvvfG7b8847j7/+9a90\n7ty5bhGBgEsuJEmS1Ojqy52NupSiqqoq2nFpaSmRSOSEUCxJkiSdDWJaSjFu3DjWrFnD3r17SUtL\nY9asWRw5cgSAKVOm8Oyzz/KrX/2KhIQE2rZty7JlyxqkaEmSJKmhxbyUokGKcCmFJEmSmkDcllJI\nkiRJXxQGY0mSJAmDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAw\nliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCD\nsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQY\njCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEhBjMJ40aRLJycn079//lG1uvfVW\nMjIyyM7OZv369bF0J0mSJDWamILxxIkTKSkpOeXnK1euZMeOHWzfvp1HH32UqVOnxtKdJEmS1Ghi\nCsZDhgwhKSnplJ8XFxdTUFAAwODBg9m/fz9VVVWxdClJkiQ1ikZdY1xZWUlaWlp0OxgMUlFR0Zhd\nSpIkSWckobE7iEQidbYDgcBJ2xUWFkbfh0IhQqFQI1YlSZKkliAcDhMOh0+rbaMG49TUVMrLy6Pb\nFRUVpKamnrTtZ4OxJEmS1BCOn3CdNWvWKds26lKK/Px8ioqKAFi7di2dOnUiOTm5MbuUJEmSzkhM\nM8bjxo1jzZo17N27l7S0NGbNmsWRI0cAmDJlCiNHjmTlypX07t2bdu3asWjRogYpWpIkSWpogcjx\ni4DjUUQgcMJaZEmSJKmh1Zc7ffKdJEmShMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTA\nYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQB\nBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJ\nMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJaIBgXFJS\nQt++fcnIyGDevHknfB4Oh+nYsSM5OTnk5OQwZ86cWLuUJEmSGlxCLAfX1tYybdo0Vq1aRWpqKhdd\ndBH5+flkZmbWaXfppZdSXFwcU6GSJElSY4ppxri0tJTevXuTnp5OYmIiY8eOZcWKFSe0i0QisXQj\nSZIkNbqYgnFlZSVpaWnR7WAwSGVlZZ02gUCAN998k+zsbEaOHMnmzZtj6VKSJElqFDEtpQgEAp/b\nZtCgQZSXl9O2bVteeuklrrnmGrZt2xZLt5IkSVKDiykYp6amUl5eHt0uLy8nGAzWadOhQ4fo+6uu\nuopbbrmFffv20blz5zrtCgsLo+9DoRChUCiW0iRJkiTC4TDhcPi02gYiMSwAPnr0KBdccAGvvvoq\nKSkpXHzxxSxdurTOxXdVVVV0796dQCBAaWkp1113HWVlZXWLCARchyxJkqRGV1/ujGnGOCEhgQUL\nFjB8+HBqa2uZPHkymZmZLFy4EIApU6bw7LPP8qtf/YqEhATatm3LsmXLYulSkiRJahQxzRg3WBHO\nGEuSJKkJ1Jc7ffKdJEmShMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJ\nkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhL\nkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFY\nkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJQAME45KSEvr2\n7UtGRgbz5s07aZtbb72VjIwMsrOzWb9+faxdSpIkSQ0upmBcW1vLtGnTKCkpYfPmzSxdupQtW7bU\nabNy5Up27NjB9u3befTRR5k6dWpMBUuSJEmNIaZgXFpaSu/evUlPTycxMZGxY8eyYsWKOm2Ki4sp\nKCgAYPDgwezfv5+qqqpYupUkSZIaXEzBuLKykrS0tOh2MBiksrLyc9tUVFTE0q0kSZLU4BJiOTgQ\nCJxWu0gk8rnHBQKFn9kK/e9LkiRJikX4f1+fL6ZgnJqaSnl5eXS7vLycYDBYb5uKigpSU1NPOFck\nUhhLKZIkSdJJhPjshGsgMOuULWNaSpGbm8v27dspKyujpqaG5cuXk5+fX6dNfn4+RUVFAKxdu5ZO\nnTqRnJwcS7eSJElSg4tpxjghIYEFCxYwfPhwamtrmTx5MpmZmSxcuBCAKVOmMHLkSFauXEnv3r1p\n164dixYtapDCJUmSpIYUiBy/ADgeRQQCJ6xDliRJkhpafbmzxT/5LhwOx7uEFslxb3qOeXw47k3P\nMY8Pxz0+HPeGZTD2L1RcOO5NzzGPD8e96Tnm8eG4x4fj3rBafDCWJEmSwGAsSZIkAWfJxXehUIg1\na9bEuwxJkiQ1c5deeukpl6CcFcFYkiRJijeXUkiSJEkYjCVJkiTAYCxJkiQBLTgYl5SU0LdvXzIy\nMpg3b168y2kRysvLueyyy+jXrx8XXnghDz/8cLxLalFqa2vJycnh6quvjncpLcL+/fsZPXo0mZmZ\nZGVlsXbt2niX1CLMnTuXfv360b9/f8aPH8/hw4fjXVKzNGnSJJKTk+nfv3903759+8jLy6NPnz4M\nGzaM/fv3x7HC5udkY/6DH/yAzMxMsrOzGTVqFAcOHIhjhc1DiwzGtbW1TJs2jZKSEjZv3szSpUvZ\nsmVLvMtq9hITE5k/fz6bNm1i7dq1/PKXv3Tcm9BDDz1EVlYWgUAg3qW0CLfddhsjR45ky5YtbNy4\nkczMzHiX1OyVlZXx2GOPsW7dOt555x1qa2tZtmxZvMtqliZOnEhJSUmdfQ888AB5eXls27aNK664\nggceeCBO1TVPJxvzYcOGsWnTJjZs2ECfPn2YO3dunKprPlpkMC4tLaV3796kp6eTmJjI2LFjWbFi\nRbzLavZ69OjBwIEDAWjfvj2ZmZns3r07zlW1DBUVFaxcuZLvfOc7p3w+vBrOgQMHeO2115g0aRIA\nCQkJdOzYMc5VNX9f/vKXSUxM5NChQxw9epRDhw6Rmpoa77KapSFDhpCUlFRnX3FxMQUFBQAUFBTw\n/PPPx6O0ZutkY56Xl0erVn+PcoMHD6aioiIepTUrLTIYV1ZWkpaWFt0OBoNUVlbGsaKWp6ysjPXr\n1zN48OB4l9IizJgxgwcffDD6A1SN67333qNbt25MnDiRQYMGcfPNN3Po0KF4l9Xsde7cmTvuuINe\nvXqRkpJCp06duPLKK+NdVotRVVVFcnIyAMnJyVRVVcW5opbl8ccfZ+TIkfEu4wuvRf4r6a+S46u6\nuprRo0fz0EMP0b59+3iX0+y98MILdO/enZycHGeLm8jRo0dZt24dt9xyC+vWraNdu3b+WrkJ7Ny5\nk1/84heUlZWxe/duqqurWbJkSbzLapECgYD/1jah++67j9atWzN+/Ph4l/KF1yKDcWpqKuXl5dHt\n8vJygsFgHCtqOY4cOcK1117LjTfeyDXXXBPvclqEN998k+LiYs477zzGjRvH6tWruemmm+JdVrMW\nDAYJBoNcdNFFAIwePZp169bFuarm7y9/+QuXXHIJXbp0ISEhgVGjRvHmm2/Gu6wWIzk5mQ8++ACA\nPXv20L179zhX1DI88cQTrFy50v8ENpAWGYxzc3PZvn07ZWVl1NTUsHz5cvLz8+NdVrMXiUSYPHky\nWVlZTJ8+Pd7ltBj3338/5eXlvPfeeyxbtozLL7+coqKieJfVrPXo0YO0tDS2bdsGwKpVq+jXr1+c\nq2r++vbty9q1a/n000+JRCKsWrWKrKyseJfVYuTn57N48WIAFi9e7ORHEygpKeHBBx9kxYoVnHPO\nOfEup1lokcE4ISGBBQsWMHz4cLKysrj++uu9YrwJvPHGGzz55JP88Y9/JCcnh5ycnBOusFXj89eb\nTeORRx7hhhtuIDs7m40bNzJz5sx4l9TsZWdnc9NNN5Gbm8uAAQMA+O53vxvnqpqncePGcckll7B1\n61bS0tJYtGgRd911F6+88gp9+vRh9erV3HXXXfEus1k5fswff/xxvv/971NdXU1eXh45OTnccsst\n8S7zCy8QcdGhJEmS1DJnjCVJkqTjGYwlSZIkDMaSJEkSYDCWJEmSAIOxJEmSBBiMJUmSJMBgLEmS\nJAEGY0mSJAkwGEuSJEmAwViSJEkCDMaSJEkSYDCWJEmSAIOxJEmSBBiMJemkOnToQFlZ2ee2Kysr\no1WrVhw7dqzxizqLPfHEEwwZMuSMjx85ciS/+93vGrAiSfrnGYwlfSGlp6fTtm1bOnToQI8ePZg4\ncSKffPLJGZ0rFArx29/+ts6+gwcPkp6e3gCV/l8fnTt3pqam5p86rlWrVrz77rsNVsfZoLCwkAkT\nJtTZt3LlyhP2SVJTMxhL+kIKBAK88MILHDx4kHXr1vGXv/yFOXPm/FPniEQiHDt2jEAg0EhV/l1Z\nWRmlpaV0796d4uLif/r4SCTSCFWd2tGjR0/YV1tb26Q1SFI8GIwlfeGlpKQwYsQI/uu//ov9+/fz\nzW9+k+7du9O5c2euvvpqKisro21DoRB33303X//612nXrh033XQTr732GtOmTaNDhw7ceuutQN2Z\n2hdffJGcnBw6duxIr169mDVr1j9VX1FREVdeeSUTJkxg8eLFdT47frb6s0sShg4dCkB2djYdOnTg\nmWeeAeCxxx4jIyODLl268K1vfYs9e/ZEj9+0aRN5eXl06dKFHj16MHfuXAAOHz7M9OnTSU1NJTU1\nlRkzZkRnr8PhMMFgkJ/+9Kf07NmTSZMmMWvWLEaPHs2ECRPo2LEjixcv5sCBA0yePJmUlBSCwSA/\n/vGPT7mE5LbbbqNXr1507NiR3NxcXn/9dQBKSkqYO3cuy5cvp0OHDuTk5JwwDpFIhDlz5pCenk5y\ncjIFBQV8/PHHwP8tXSkqKuLcc8+lW7du3H///f/Un4cknYrBWNIX1j9mUsvLy3nppZcYNGgQx44d\nY/LkyezatYtdu3bRpk0bpk2bVue4J598kscee4zq6upoEP3lL3/JwYMHefjhh0/op3379jz55JMc\nOHCAF198kV/96lesWLHitOssKiri+uuv57rrruPll1/mv//7v6OfBQKBU85Y/+lPfwJg48aNHDx4\nkDFjxrB69WpmzpzJM888w549ezj33HMZO3Ys8PflH1deeSUjR45kz5497NixgyuuuAKA++67j9LS\nUjZs2MCGDRsoLS2tM8NeVVXFRx99xK5du3j00UeJRCIUFxczZswYDhw4wPjx4/n2t79N69at2blz\nJ+vXr+cPf/gDv/nNb05a+8UXX8yGDRv46KOPGD9+PGPGjKGmpoYRI0Ywc+ZMxo4dy8GDB1m/fv0J\n47Bo0SIWL15MOBzm3Xffpbq6+oQ/wzfeeINt27bx6quvMnv2bP72t7+d9p+HJJ2KwVjSF1IkEuGa\na64hKSmJIUOGEAqFmDlzJp07d+bf/u3fOOecc2jfvj0zZ85kzZo10eMCgQDf/va3yczMpFWrViQk\nJETPdyqXXnop/fr1A6B///6MHTu2zjnr8/rrr1NZWUl+fj4ZGRlkZWXx1FNPnfH3XrJkCZMnT2bg\nwIG0bt2auXPn8tZbb/H+++/zwgsvkJKSwowZM2jdujXt27fn4osvBuCpp57innvuoWvXrnTt2pV7\n7723zsVurVq1YtasWSQmJnLOOecAcMkll5Cfnw/AgQMHeOmll5g/fz5t2rShW7duTJ8+nWXLlp20\nzhtuuIGkpCRatWrF7bffzuHDh9m6dSvw97Gub7yXLFnCHXfcQXp6Ou3atWPu3LksW7aszuz0vffe\ny5e+9CUGDBhAdnY2GzZsOOMxlaR/SIh3AZJ0JgKBACtWrODyyy+vs//QoUPMmDGDl19+mY8++giA\n6upqIpFIdEYyLS3tpOc7lbfffpu77rqLTZs2UVNTw+HDh7nuuutOq87FixczbNgwOnToAMCYMWNY\nvHgx06dPP63jj7dnzx5yc3Oj2+3ataNLly5UVlZSUVHB+eeff9Ljdu/ezbnnnhvd7tWrF7t3745u\nd+vWjdatW9c5JhgMRt+///77HDlyhJ49e0b3HTt2jF69ep20v5/97Gc8/vjj7N69m0AgwMcff8ze\nvXtP+zseX+vRo0epqqqK7uvRo0f0fdu2bc/4wktJ+iyDsaRm5ec//znbtm2LXuz2n//5nwwaNKhO\nMD4+BH+78UtnAAAXq0lEQVTexXfjx4/n1ltv5eWXX6Z169bMmDHjtELep59+ytNPP82xY8eigfLw\n4cPs37+fjRs3MmDAANq1a1cn1H3wwQf1njMlJaXObeQ++eQTPvzwQ4LBIGlpaaecwf3HcZmZmQDs\n2rWLlJSU6OcnG5PP7ktLS+NLX/oSH374Ia1a1f/Lxtdee40HH3yQ1atXR2faO3fuHJ0l/rzxPv47\n7tq1i4SEBJKTk9m1a1e9x0pSLFxKIalZqa6upk2bNnTs2JF9+/ad9EK543+Nn5yczM6dO+s9Z1JS\nEq1bt6a0tJSnnnrqtO5k8fzzz5OQkMCWLVuia3u3bNnCkCFDKCoqAmDgwIE899xzfPrpp+zYseOE\n28YdX9u4ceNYtGgRGzZs4PDhw8ycOZOvfOUr9OrVi2984xvs2bOHhx56iMOHD3Pw4EFKS0ujx82Z\nM4e9e/eyd+9eZs+eXe/t0Y4fo549ezJs2DBuv/12Dh48yLFjx9i5c2d0HfRnHTx4kISEBLp27UpN\nTQ2zZ8+OXjwHf5/tLSsrO+VyinHjxjF//nzKysqorq6OrkmuL5A39Z07JDVPBmNJzcr06dP59NNP\n6dq1K5dccglXXXXV584Q33bbbTz77LN07tz5pEsc/v3f/5177rmHL3/5y/zkJz/h+uuvr/d8/1BU\nVMSkSZMIBoN0796d7t27k5yczLRp03jqqac4duxYdD1wcnIyEydO5MYbb6xzvsLCQgoKCkhKSuLZ\nZ5/liiuu4Cc/+QnXXnstKSkpvPfee9FZ4g4dOvDKK6/w+9//np49e9KnTx/C4TAAd999N7m5uQwY\nMIABAwaQm5vL3XfffcrvcLKLAouKiqipqSErK4vOnTszZsyY6Az3Z9uPGDGCESNG0KdPH9LT02nT\npk2dJRdjxowBoEuXLnWWhfzDpEmTmDBhAkOHDuX888+nbdu2PPLII/WOd2Pfck9SyxCI+N9sSZIk\nyRljSZIkCQzGkiRJEmAwliRJkoCz5HZtoVDotG+WL0mSJJ2pSy+9NHph8vHOihnjNWvWRJ+E1NSv\ne++9N259t+SX4+6Yt5SX4+6Yt5SX4+64f1Fe9U3GnhXBWJIkSYo3g7EkSZKEwZhQKBTvElokx73p\nOebx4bg3Pcc8Phz3+HDcG1ZMD/iYNGkSL774It27d+edd945aZtbb72Vl156ibZt2/LEE0+Qk5Nz\nYhGBADGUIUmSJJ2W+nJnTDPGEydOpKSk5JSfr1y5kh07drB9+3YeffRRpk6dGkt3DeqZZ15m2LCZ\nDBs2k2eeeTne5UiSJCnOYrpd25AhQygrKzvl58XFxRQUFAAwePBg9u/fT1VVFcnJybF0G7NnnnmZ\n731vD/v23QfAX/+6mEDgZUaPHh7XuiRJkhQ/jbrGuLKykrS0tOh2MBikoqKiMbs8LY89toZ9+wqA\nABBg374CHn3U+yhLkiS1ZI3+gI/j13AEAoGTtissLIy+D4VCLiaXJElSzMLh8Ckf6HG8Rg3Gqamp\nlJeXR7crKipITU09advPBuPGdvPNl/LXvy7+31lj6Nx5Md/97qVN1r8kSZKaxvETrrNmzTpl20Zd\nSpGfn09RUREAa9eupVOnTnFfXwwwZsxwFi7sSV7ej4BcFi7s6fpiSZKkFi6m27WNGzeONWvWsHfv\nXpKTk5k1axZHjhwBYMqUKQBMmzaNkpIS2rVrx6JFixg0aNCJRcTxdm3eKk6SJKnlqC/7xRSMG4rB\nWJIkSU2h0e5jLEmSJDUXBmNJkiQJg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIk\nSQIMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIMxpIk\nSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSUADBOOSkhL69u1LRkYG8+bN\nO+HzvXv3MmLECAYOHMiFF17IE088EWuXkiRJUoMLRCKRyJkeXFtbywUXXMCqVatITU3loosuYunS\npWRmZkbbFBYWcvjwYebOncvevXu54IILqKqqIiEh4f+KCASIoYyYxLNvSZIkNa36sl9MM8alpaX0\n7t2b9PR0EhMTGTt2LCtWrKjTpmfPnnz88ccAfPzxx3Tp0qVOKJYkSZLOBjEl1MrKStLS0qLbwWCQ\nt99+u06bm2++mcsvv5yUlBQOHjzI008/HUuXkiRJUqOIKRgHAoHPbXP//fczcOBAwuEwO3fuJC8v\njw0bNtChQ4c67QoLC6PvQ6EQoVAoltIkSZIkwuEw4XD4tNrGFIxTU1MpLy+PbpeXlxMMBuu0efPN\nN/nRj34EwL/8y79w3nnnsXXrVnJzc+u0+2wwliRJkhrC8ROus2bNOmXbmNYY5+bmsn37dsrKyqip\nqWH58uXk5+fXadO3b19WrVoFQFVVFVu3buX888+PpVtJkiSpwcU0Y5yQkMCCBQsYPnw4tbW1TJ48\nmczMTBYuXAjAlClTmDlzJhMnTiQ7O5tjx47x05/+lM6dOzdI8ZIkSVJDiel2bQ1WhLdrkyRJUhNo\ntNu1SZIkSc2FwViSJEnCYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJ\nkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJ\nkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEtAAwbikpIS+ffuSkZHBvHnzTtomHA6T\nk5PDhRdeSCgUirVLSZIkqcEFIpFI5EwPrq2t5YILLmDVqlWkpqZy0UUXsXTpUjIzM6Nt9u/fz9e+\n9jVefvllgsEge/fupWvXrnWLCASIoYyYxLNvSZIkNa36sl9MM8alpaX07t2b9PR0EhMTGTt2LCtW\nrKjT5qmnnuLaa68lGAwCnBCKJUmSpLNBTMG4srKStLS06HYwGKSysrJOm+3bt7Nv3z4uu+wycnNz\n+d3vfhdLl5IkSVKjSIjl4EAg8Lltjhw5wrp163j11Vc5dOgQX/3qV/nKV75CRkZGnXaFhYXR96FQ\nyLXIkiRJilk4HCYcDp9W25iCcWpqKuXl5dHt8vLy6JKJf0hLS6Nr1660adOGNm3aMHToUDZs2FBv\nMJYkSZIawvETrrNmzTpl25iWUuTm5rJ9+3bKysqoqalh+fLl5Ofn12nzrW99i9dff53a2loOHTrE\n22+/TVZWVizdSpIkSQ0uphnjhIQEFixYwPDhw6mtrWXy5MlkZmaycOFCAKZMmULfvn0ZMWIEAwYM\noFWrVtx8880GY0mSJJ11YrpdW4MV4e3aJEmS1AQa7XZtkiRJUnNhMJYkSZIwGEuSJEmAwViSJEkC\nDMaSJEkSYDCWJEmSAIOxJEmSBBiMJUmSJMBgLEmSJAEGY0mSJAkwGEuSJEmAwViSJEkCDMaSJEkS\nYDCWJEmSAIOxJEmSBBiMJUmSJMBgLEmSJAEGY0mSJAkwGEuSJEmAwViSJEkCDMaSJEkSYDCWJEmS\nAIOxJEmSBDRAMC4pKaFv375kZGQwb968U7b785//TEJCAs8991ysXUqSJEkNLqZgXFtby7Rp0ygp\nKWHz5s0sXbqULVu2nLTdnXfeyYgRI4hEIrF0KUmSJDWKmIJxaWkpvXv3Jj09ncTERMaOHcuKFStO\naPfII48wevRounXrFkt3kiRJUqOJKRhXVlaSlpYW3Q4Gg1RWVp7QZsWKFUydOhWAQCAQS5eSJElS\no0iI5eDTCbnTp0/ngQceIBAIEIlETrmUorCwMPo+FAoRCoViKU2SJEkiHA4TDodPq20gEsOi37Vr\n11JYWEhJSQkAc+fOpVWrVtx5553RNueff340DO/du5e2bdvy2GOPkZ+f/39F/G9ojod49i1JkqSm\nVV/2iykYHz16lAsuuIBXX32VlJQULr74YpYuXUpmZuZJ20+cOJGrr76aUaNGnXaBjc1gLEmS1HLU\nl/1iWkqRkJDAggULGD58OLW1tUyePJnMzEwWLlwIwJQpU2I5vSRJktRkYpoxbrAinDGWJElSE6gv\n+/nkO0mSJAmDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJ\nkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJ\nkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAhogGJeUlNC3b18yMjKYN2/eCZ8vWbKE\n7OxsBgwYwNe+9jU2btwYa5eSJElSgwtEIpHImR5cW1vLBRdcwKpVq0hNTeWiiy5i6dKlZGZmRtu8\n9dZbZGVl0bFjR0pKSigsLGTt2rV1iwgEiKGMmMSzb0mSJDWt+rJfTDPGpaWl9O7dm/T0dBITExk7\ndiwrVqyo0+arX/0qHTt2BGDw4MFUVFTE0qUkSZLUKGIKxpWVlaSlpUW3g8EglZWVp2z/29/+lpEj\nR8bSpSRJktQoEmI5OBAInHbbP/7xjzz++OO88cYbJ/28sLAw+j4UChEKhWIpTZIkSSIcDhMOh0+r\nbUzBODU1lfLy8uh2eXk5wWDwhHYbN27k5ptvpqSkhKSkpJOe67PBWJIkSWoIx0+4zpo165RtY1pK\nkZuby/bt2ykrK6Ompobly5eTn59fp82uXbsYNWoUTz75JL17946lO0mSJKnRxDRjnJCQwIIFCxg+\nfDi1tbVMnjyZzMxMFi5cCMCUKVOYPXs2H330EVOnTgUgMTGR0tLS2CuXJEmSGlBMt2trsCK8XZsk\nSZKaQKPdrk2SJElqLgzGkiRJEgZjSZIkCTAYS5IkSYDBWJIkSQIMxpIkSRJgMJYkSZIAg7EkSZIE\nGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIk\nwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIMxpIkSRJgMJYkSZKABgjGJSUl9O3bl4yMDObNm3fS\nNrfeeisZGRlkZ2ezfv36WLuUJEmSGlxMwbi2tpZp06ZRUlLC5s2bWbp0KVu2bKnTZuXKlezYsYPt\n27fz6KOPMnXq1JgKliRJkhpDTMG4tLSU3r17k56eTmJiImPHjmXFihV12hQXF1NQUADA4MGD2b9/\nP1VVVbF0K0mSJDW4mIJxZWUlaWlp0e1gMEhlZeXntqmoqIilW0mSJKnBJcRycCAQOK12kUjkc48L\nBAo/sxX631dTiHCaX0OSJElfOOH/fX2+mIJxamoq5eXl0e3y8nKCwWC9bSoqKkhNTT3hXJFIYSyl\nnLFwOEwoFIpL35IkSWpsIT474RoIzDply5iWUuTm5rJ9+3bKysqoqalh+fLl5Ofn12mTn59PUVER\nAGvXrqVTp04kJyfH0q0kSZLU4GKaMU5ISGDBggUMHz6c2tpaJk+eTGZmJgsXLgRgypQpjBw5kpUr\nV9K7d2/atWvHokWLGqRwSZIkqSEFIscvAI5HEYHACeuQm4pLKSRJklqO+nKnT76TJEmSMBhLkiRJ\ngMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJ\nAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJ\nEmAwJj09Pd4lSJIk6SwQiEQikbgXEQhwFpQhSZKkZq6+3NniZ4wlSZIkiCEY79u3j7y8PPr06cOw\nYcPYv3//CW3Ky8u57LLL6NevHxdeeCEPP/xwTMVKkiRJjeWMg/EDDzxAXl4e27Zt44orruCBBx44\noU1iYiLz589n06ZNrF27ll/+8pds2bIlpoIlSZKkxnDGwbi4uJiCggIACgoKeP75509o06NHDwYO\nHAhA+/btyczMZPfu3WfaZaMIh8PxLqFFctybnmMeH45703PM48Nxjw/HvWGdcTCuqqoiOTkZgOTk\nZKqqquptX1ZWxvr16xk8ePCZdtko/AsVH45703PM48Nxb3qOeXw47vHhuDeshPo+zMvL44MPPjhh\n/3333VdnOxAIEAgETnme6upqRo8ezUMPPUT79u1P2qawsDD6PhQKEQqF6itNkiRJ+lzhcPi0/wNR\nbzB+5ZVXTvlZcnIyH3zwAT169GDPnj107979pO2OHDnCtddey4033sg111xzyvN9NhhLkiRJDeH4\nCddZs2adsu0Z38f4hz/8IV26dOHOO+/kgQceYP/+/SdcgBeJRCgoKKBLly7Mnz+/3oLXrFlzJmVI\nkiRJp+3SSy895QzyGQfjffv2cd1117Fr1y7S09N5+umn6dSpE7t37+bmm2/mxRdf5PXXX2fo0KEM\nGDAgutRi7ty5jBgx4oy/jCRJktQYzoon30mSJEnx5pPvJEmSJAzGkiRJEtCCg3FJSQl9+/YlIyOD\nefPmxbucFsFHhMdXbW0tOTk5XH311fEupUXYv38/o0ePJjMzk6ysLNauXRvvklqEuXPn0q9fP/r3\n78/48eM5fPhwvEtqliZNmkRycjL9+/eP7tu3bx95eXn06dOHYcOGsX///jhW2PycbMx/8IMfkJmZ\nSXZ2NqNGjeLAgQNxrLB5aJHBuLa2lmnTplFSUsLmzZtZunSpj6puAj4iPL4eeughsrKy6r3nuBrO\nbbfdxsiRI9myZQsbN24kMzMz3iU1e2VlZTz22GOsW7eOd955h9raWpYtWxbvspqliRMnUlJSUmff\nAw88QF5eHtu2beOKK6444U5Vis3JxnzYsGFs2rSJDRs20KdPH+bOnRun6pqPFhmMS0tL6d27N+np\n6SQmJjJ27FhWrFgR77KavS/CI8Kbq4qKClauXMl3vvMdvN628R04cIDXXnuNSZMmAZCQkEDHjh3j\nXFXz9+Uvf5nExEQOHTrE0aNHOXToEKmpqfEuq1kaMmQISUlJdfYVFxdTUFAAQEFBAc8//3w8Smu2\nTjbmeXl5tGr19yg3ePBgKioq4lFas9Iig3FlZSVpaWnR7WAwSGVlZRwrannO1keEN1czZszgwQcf\njP4AVeN677336NatGxMnTmTQoEHcfPPNHDp0KN5lNXudO3fmjjvuoFevXqSkpNCpUyeuvPLKeJfV\nYlRVVZGcnAz8/SFgVVVVca6oZXn88ccZOXJkvMv4wmuR/0r6q+T4Op1HhKvhvPDCC3Tv3p2cnBxn\ni5vI0aNHWbduHbfccgvr1q2jXbt2/lq5CezcuZNf/OIXlJWVsXv3bqqrq1myZEm8y2qRAoGA/9Y2\nofvuu4/WrVszfvz4eJfyhdcig3Fqairl5eXR7fLycoLBYBwrajlO9xHhajhvvvkmxcXFnHfeeYwb\nN47Vq1dz0003xbusZi0YDBIMBrnooosAGD16NOvWrYtzVc3fX/7yFy655BK6dOlCQkICo0aN4s03\n34x3WS1GcnIyH3zwAQB79uyhe/fuca6oZXjiiSdYuXKl/wlsIC0yGOfm5rJ9+3bKysqoqalh+fLl\n5Ofnx7usZi8SiTB58mSysrKYPn16vMtpMe6//37Ky8t57733WLZsGZdffjlFRUXxLqtZ69GjB2lp\naWzbtg2AVatW0a9fvzhX1fz17duXtWvX8umnnxKJRFi1ahVZWVnxLqvFyM/PZ/HixQAsXrzYyY8m\nUFJSwoMPPsiKFSs455xz4l1Os9Aig3FCQgILFixg+PDhZGVlcf3113vFeBN44403ePLJJ/njH/9I\nTk4OOTk5J1xhq8bnrzebxiOPPMINN9xAdnY2GzduZObMmfEuqdnLzs7mpptuIjc3lwEDBgDw3e9+\nN85VNU/jxo3jkksuYevWraSlpbFo0SLuuusuXnnlFfr06cPq1au566674l1ms3L8mD/++ON8//vf\np7q6mry8PHJycrjlllviXeYXno+EliRJkmihM8aSJEnS8QzGkiRJEgZjSZIkCTAYS5IkSYDBWJIk\nSQIMxpIkSRLw/9utAwEAAAAAQftTL1IUiTEAAFQ1VGbNRWAxZTsAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x519ad10>" | |
] | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"actdf2.plot()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 12, | |
"text": [ | |
"<matplotlib.axes.AxesSubplot at 0x530a850>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEECAYAAADOJIhPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXt4FdW5/rtzvydAIEACBEggAhEQDN7drVjAKqL1QKlH\nwUurcHq8t1paPfZUhdOe09qq9PZLxdKjUE8VqJWIULZ45RoUjEC4Q24khNyTndv6/fGxMmvPntl7\nrjs7ybzPkyd7Zs+eWWtmzXrX973f+paLMcbgwIEDBw4GJCJ6uwAOHDhw4KD34JCAAwcOHAxgOCTg\nwIEDBwMYDgk4cODAwQCGQwIOHDhwMIDhkIADBw4cDGCYJoF7770XGRkZyM/P79n37LPPIisrC9On\nT8f06dOxefPmnu9WrlyJ3Nxc5OXlYcuWLT379+7di/z8fOTm5uLhhx82WywHDhw4cKABpkngnnvu\nQVFRkc8+l8uFxx57DMXFxSguLsa8efMAACUlJVi/fj1KSkpQVFSE5cuXg09TWLZsGQoLC1FaWorS\n0lK/czpw4MCBA+thmgSuvfZaDBo0yG+/0hy0jRs3YvHixYiOjkZ2djZycnKwc+dOVFRUoLGxEQUF\nBQCAu+++Gxs2bDBbNAcOHDhwEAS2aQIvvfQSpk6divvuuw91dXUAgPLycmRlZfUck5WVhbKyMr/9\nmZmZKCsrs6toDhw4cODgImwhgWXLluHEiRPYv38/RowYgccff9yOyzhw4MCBA5OIsuOkw4YN6/l8\n//3345ZbbgFAI/wzZ870fHf27FlkZWUhMzMTZ8+e9dmfmZnpd96cnBwcO3bMjiI7cODAQb/F1KlT\nsX//fsXvbLEEKioqej6//fbbPZFD8+fPx7p169De3o4TJ06gtLQUBQUFGD58OFJSUrBz504wxrB2\n7VosWLDA77zHjh0DY8zU35IlS0yfIxz+nHqE319/qYtTj/D6s6Ien3/+uWp/bdoSWLx4MT744APU\n1NRg1KhR+OlPfwqPx4P9+/fD5XJh7Nix+P3vfw8AmDRpEhYuXIhJkyYhKioKq1evhsvlAgCsXr0a\nS5cuRWtrK2666SbMnTvXbNEUkZ2dbct5Qw2nHuGH/lIXpx7hBbvrYZoE3njjDb999957r+rxK1as\nwIoVK/z2z5gxAwcOHDBbHAcOHDhwoAMDbsZwWlpabxfBEjj1CD/0l7o49Qgv2F2PAUcC06ZN6+0i\nWAKnHuGH/lIXpx7hBbvr4WKM9ZmVxVwuF/pQcR04cGAxBg8ejAsXLvR2McIWgwYNQm1trd/+QH2n\nQwIOHDjoM3D6gMBQuz+B7tuAcwd5PJ7eLoIlcOoRfjBSF8aA7m7ry2IG/emZOAiOAUcCDhyEEz7+\nGLjjjt4uhYOBDMcd5MBBL2LTJuBXvwK2b+/tkvQNOH1AYDjuIAcO+hja2wGvt7dL4aC3sWzZMjz3\n3HO9cu0BRwL9xd/p1CP8YKQu7e30F07oT88kVIiIiMDx48d99j377LO46667NP3+t7/9LX7yk58A\noPs/atQoy8uohgFHAg4chBPCkQQcWAOeEifcMeBIwO1293YRLIFTj/CDkbp4veHnDupPz6Q3Ifrg\nPR4PsrKy8Mtf/hIZGRkYOXIk1qxZ0/P90qVL8fTTT6OlpQXz5s1DeXk5kpOTkZKSgsrKSuzatQsz\nZ85Eamoqhg8fbml6/gFHAg4chBMcS2DgoKqqCg0NDSgvL0dhYSH+7d/+DfX19QDIanC5XEhISEBR\nURFGjhyJxsZGNDQ0YPjw4Xj44Yfx6KOPor6+HsePH8fChQstK9eAI4H+4u906hF+cDSB3ofLZc2f\nHYiOjsYzzzyDyMhIzJs3D0lJSTh8+HDP99xyUIriiYmJQWlpKWpqapCQkIBZs2ZZVq4BRwIOHIQT\nwpEE+jIYs+ZPLyIjI9HR0eGzr6OjA9HR0T3bQ4YMQUSE1OUmJCSgqalJ0/kLCwtx5MgRXHLJJSgo\nKMA//vEP/YVUwYAjgf7i73TqEX4wUpdwDBHtT88kVBg9ejROnDjhs+/EiRO61gLgQrKSoJyTk4PX\nX38d1dXVePLJJ3HHHXegtbXVVJk5BhwJOHAQTnAsgf6BRYsW4bnnnkNZWRm6u7uxdetWvPPOO7hD\n43RwvgIYAGRkZOD8+fNoaGjo+f4vf/kLqqurAQCpqalwuVw+VoUZDDgS6Mv+ThFOPcIPZjSBcJoE\n25+eSajwzDPP4KqrrsI111yDwYMH46mnnsLrr7+OSZMm9RwTKGSUC8MAkJeXh8WLF2PcuHEYPHgw\nKioq8N5772HKlClITk7Go48+inXr1iE2NtaSstuy0LwDBw60gRNAVxcQ5byNfvB6AYv6OlsRFxeH\nn//85/j5z3+u+L3b7cbp06d99onuo1dffdXnu8LCQhQWFvZsr1271sLS+sLJHeTAQS9i2TLgd78D\nmpqAxMTeLk144cwZ4OabAXGNdKcPCAwnd5ADB30MXA9wdAF/1NUBCuujOLAYA44E+ou/06lH+MGo\nJiD+DweEyzPxesPrvvRXDDgScOAgnBCOJBAucEggNHA0AQcOehELFgAbNwKlpUBOTm+XJrywbRsw\nfz7Q3Cztc/qAwHA0AQcOLER7O3AxtYut1xD/O5DgWAKhwYAjgXDxd5qFUw/78X//Bzz6qPbjHU3A\nWni9QGen7xrMgwYN6ompd/78/wYNGqT7PpsmgXvvvRcZGRnIz8/v2VdbW4sbb7wREyZMwDe+8Q3U\n1dX1fLdy5Urk5uYiLy8PW7Zs6dm/d+9e5OfnIzc3Fw8//LDZYjlwYBrNzUBjo73XCEcSCBfwdBpi\nSp7a2tqe2bXB/rZv36752HD+01OPWgPhVKZJ4J577kFRUZHPvlWrVuHGG2/EkSNHcMMNN2DVqlUA\ngJKSEqxfvx4lJSUoKirC8uXLe/xUy5YtQ2FhIUpLS1FaWup3TqvQX/KiOPWwH+3tQFub9uON5g6K\njAyv/EHh8kz4vTd6b8KlHmZhdz1Mk8C1117rZ4Js2rQJS5YsAQAsWbIEGzZsAABs3LgRixcvRnR0\nNLKzs5GTk4OdO3eioqICjY2NKCgoAADcfffdPb9x0Pfw178CgpHXZ6GXBIxeIznZsQSUwDt/597Y\nC1s0gaqqKmRkZACgZEhVVVUAgPLycmRlZfUcl5WVhbKyMr/9mZmZKCsrs6NoYePvNItwrseOHcDu\n3dqODed6dHToIwGjmkBSUnh1dOHyTMySQLjUwyzsroft2UrExEhWYOnSpT3pWdPS0jBt2rQec4nf\nrEDb+/fv13U83375ZWDCBA9iYrQdP5C3m5vdaGuz93mEYvvwYQ8ocaO24/fv36/7enV1QHKyG15v\n79dX3tn0dnlKSmi7vd3Y7408j3Dc5tDze4/H07N8ZdB01swCnDhxgk2ZMqVne+LEiayiooIxxlh5\neTmbOHEiY4yxlStXspUrV/YcN2fOHPbZZ5+xiooKlpeX17P/9ddfZw888IDfdSwqriGMHMnYkSO9\ndvmQobycsaIic+dYuJCxJ56wpjy9iWeeYSw/395rjBnD2OWXM7Z+vb3X6Yv42c9oiZfDh3u7JH0f\ngfpOW9xB8+fPx2uvvQYAeO2117BgwYKe/evWrUN7eztOnDiB0tJSFBQUYPjw4UhJScHOnTvBGMPa\ntWt7fhMuCMcFwe3Axx8DL79s7hzNzfb70kOBUGkC4eYOChfwe+/cG3thmgQWL16Mq666CocPH8ao\nUaPw6quv4qmnnsL777+PCRMm4J///CeeeuopAMCkSZOwcOFCTJo0CfPmzcPq1at7XEWrV6/G/fff\nj9zcXOTk5GDu3Llmi6YIuYmlFaHoEPTAaD2CoaPD/EvX0qL9XtlVDyvgaAK9Cz7oMjr4Cpd6mIXd\n9TCtCbzxxhuK+7du3aq4f8WKFVixYoXf/hkzZuDAgQNmi2MbvN7wIgG70NHhG5dtBI4loO8aSUkD\nw8rUCyc6KDQYcDOGuYiiB4yFnyVgpB5aEGpLwK56WIGODn2ds5G6eL3hFyIaLs/ELAmESz3Mwu56\nDDgSMAI+Mh4IozUrSMCxBLSBDy4SE8OLBMIFjiYQGgw4EjDiX+Odfzh1bHb5CdvbzbuDWlq0E2Y4\n+205IYq5awJBb106O2m2cHx86Du6O+9Ub8/h8kyceQIEu+sx4EjACMKRBOyCYwlI4PchEKEVFhpf\nJL69ndbPjYkJrZXZ3g68/rr9GVLNwtEEQoMBRwJG/GtaOoNQI1w1Acb6lyYAqNeFMeD++6V2obcu\n7e1EALGxoe3oLk7gV71muDwTr9ecaB4u9TALRxMIAziWgHZ4veQ+6Q/3Khj5mx2pchKIiQktCVRU\nSNcPZ4SjaN4fMeBIwNEEAsNsiChfBao/zBPgnY9aXeQkoLcuvU0Cas/ZrmdSWQm0tmo/vq0NSElx\nNAFHEwgDBOsM+hPMWgItLfS/P9yrYO4gs9ErIgmE0tVYWSldP5R46CFAT3JgxxIIDQYcCRiN5Rb/\nhwPs8hO2t5t76ZqbgbS03tcEGAPee8/cOYKRv5wE+oomEMwdZNczqayUBglaYJYEHE1AGwYcCRhB\nOLqD7IJZd1BLCzBkSO/fq3PngIULzZ0jmCWgtPKVHvS2OyjUI+zqan0DKccSCA0GHAkYze8C9H7H\nJiJccwc1NwODB/e+JtDSYr7zCJbSQW4J9DVNQO2adj2Tmhp97xDXBJzcQR5bzz/gSMAIBpol0N0N\ndHUZ+31LC7mDOjuNn8MKNDeb71g7Omgk2t80gYoKIDU1tMTT1QWcP6/fEjAjDDvQhgFHAo4mEBjc\ntWH0xWtupjQIcXHa7pdd9WhpITLr7DR+jvZ26oTs0gS83t7TBMaMCa0mUFtLOk0o3UGOJqANA44E\njCAc3UF2gZOAUT93S4tEAr15v3ioqpnONZgl0BfnCXR3k14yenRoiaemhv47mkD4YcCRgNF5AomJ\n4UUCduYOEv/rRXMzkJCgnQTs1AQAffU4elTyl/Pf6rEE7NIEPvrIeGoKOWpqqE6B1jCw45nQMp3a\nSYAxur9mSMDRBLRhwJGAEXDfpN0ksGED0Nio/v3f/gY8/bS9ZTDrDgoXS4CTgJ6R569/Dfzv/0rb\n3BLQKgzrhdbcQbffDpw5Y+waclRUACNGhF6M5iSgtU10dABRUb2TXK+/4L//GygqCn7cgCMBo7mD\nUlPt1wSefRa4uDa2IsrKgNOn6XM4awJ6LAG76mHEHdTW5vuM29v1uYPsmifQ0GBd26usBIYPD0wC\ndjyTmhrKmKq1Hl6v+eR64awJLF4MaB3gG63Hnj2kxQTDgCMBIwiVJdDSInVeSpB3Ulbg178Gfvc7\nabu/aAJGLAH5OtJ63UF6ocUdxBe2sWo0rGYJ1NVpT5ltBNXVwMiR+kkg1KJ5qFBVJc3ctguNjTSI\nCYYBRwJGNYFQkEBzM9DUpP59W5tUBqv8hPv3+7oaQm0J2OXvtMIS0BsiakYTUOscuXvQKvLnJBAd\n7Xtvvv1t0h4A+zSBrCxjlkB/1ARaWwO/6yKM1qOpqR+TgJmwPyPg7qBQkECoLYEzZ/w7PsCaENFQ\nWAJdXcovkxFhWCRZxqidhSI6KNBo1y4SkHeuDQ30ZxdqaoDMTO31aGujNhRq7SJUaGsL/K5bgX5r\nCZw8CRQUGP+90XkCZmYuakUwEhDdFUb9hHffDWzbJm2fPatMAqFyB5n12/7978C99/rv5/dRzzMT\nSZYLk4HmO1iVOyhQRxcqErCibQUCtwS0DgyMWgK/+AWwbh19DmdNQI8lYLQejY0UBRYMfY4Eqqul\nSINQIRTuoI4OGnkGcweZ7QzOnAE+/5w+M+ZvCbS3kzvHrDsoNjY0lkB5uW9YJ4cRS0DsCHkHHYjM\n+H47cweFkgTsfF6hcgeVltJAMdzR2mq/JdBv3UGNjfoyEcphNHeQ3e4g3iCCuYPMagLNzRQPD5AY\nKM+x09FhbuFzLZZAVxfw8cf02azftqaG0hHIYVYT6Oggv3mgeli5nkCoNYFAloAdvvSaGuMkoKfu\n4qp24awJtLXZrwn0W3dQU5O+hSmsgNcbPiRgtjNoaQGOHaPPXBCWu4PMkIAWYbikBFi61Nj55Th/\nXjkMzkh0kHh/tVoCZuLY5ZaA0oQwK0mAsd6xBBjTbwm0tRmLDmptDX3/YAR63EFG0N0tDciCwVYS\nyM7OxqWXXorp06ej4KIjv7a2FjfeeCMmTJiAb3zjG6irq+s5fuXKlcjNzUVeXh62bNmieE5OAkZn\nUBrVBPikIatmbsrBO61ADcMKv21zs0QCZ89K5+XgJGCnJtDcbJ3/mVsC8ufS3Exx6UbdQVosAfnK\nV0ZzB0VEkP6gFPBgJQk0NNA9SUoKTAJW+9Kbmui6etaZ8HqNCcOiJRDOmoAeYdhIPfhgLEJDD28r\nCbhcLng8HhQXF2PXrl0AgFWrVuHGG2/EkSNHcMMNN2DVqlUAgJKSEqxfvx4lJSUoKirC8uXL0a0Q\nuMw7yVDGoHM/eUSEfZFJobQETp2iepw5A2Rk+LuDrNAEgpGAVc/v/HllLaWlBRg0yLwlEEjbMJvb\nhl8DUO/sOAlYESHDJ4opXU8+R8JK1NQAQ4dqTyrIy2NEE+gLlkBXF71ndloCWl1BQAjcQUw2RNu0\naROWLFkCAFiyZAk2XFxvbuPGjVi8eDGio6ORnZ2NnJycHuIQwV8Kow/a6DyB2Fh7wx71koAZTSA5\nmWYenz0LjB9vrTtIiyXQ0mKd/5knJpPrAs3NRAJGQ0RFSyBQdJBoCRjRBGJj6bOa79tKS4C7gvj1\n1CwBq33p1dVAejrV1W4S6AuaAO+7tFoCRuoRNiTgcrkwe/ZszJw5E3/84x8BAFVVVcjIyAAAZGRk\noKqqCgBQXl6OrKysnt9mZWWhrKzM75ycPUPJ9uLsRbtIQIs7SOykjIAxuk5+PrmEzpwBcnL8o4PM\nuIO0WgJWjTrPn6eOWK4L8HUNlDqQNWuU9xvRBMzkuxctATXfdyhIgKd4tssSqK4mSyAUJBAKS6C2\n1lyEIm9PdlsCWsJDAZtJ4OOPP0ZxcTE2b96MV155BR9++KHP9y6XCy6XS/X3St/xG2c0Qsho7iDe\nIdj1ovAVueycJ9DWRvWYMIEihLglYFd0kNq94iTAmDWawIQJ6paAUhlWrKA8THIYCREV3UFG5wkA\ngd1BCQn2kkBnp5S1E9BXj5YW36R7SuDuID0kwIXhcNQEVq8G/ud/jP9eryVgpB5aw0MBIEr32XVg\nxMUWN3ToUNx2223YtWsXMjIyUFlZieHDh6OiogLDhg0DAGRmZuKMkL/g7NmzyMzM9Dvnpk1LAWTj\nl78EJk5Mw7Rp03puEjebrN72et2IjQUY8+CDD4A777T+ejTT1gMyjJSPr6nxXOw83XC59F9vyxYP\noqOBnBw3jh0DDh/2YNYsqh8/ntJmu9Herv/8W7d60NUFREe7ERcHHD3qgcfjf3xLC22//74HMTHG\n79+WLR60tgJjx7pRW+v7fUsL0NHhQUmJ//3s7PSvH3WCHly4QMd3dACtrR4cOAC0tSlfv6rKg/R0\noL3dWPnPnvWgtJSuFxMDfPihB5mZvscfOQKkp7vh9Zpvbzt3epCaKl2vvJyez8yZ9P3x48rPK9D2\nkSPAqlVu3Hmn+vHV1W4MHQp89pnn4uAt+Pm9XuD8eQ927vRtn8HKU1cHtLYauz9at+vrqX0Z/f3I\nkXT/a2r032+t25984sGxY2uwdCkF6AQEswnNzc2soaGBMcZYU1MTu+qqq9h7773HfvCDH7BVq1Yx\nxhhbuXIle/LJJxljjH355Zds6tSpzOv1suPHj7Nx48ax7u5un3MCYHfeyRjA2GefGSvX9u3bdf9m\n1izGPvmEscmTGTtwwNh1g+EPf2Ds+usZGz9e/ZicHKq712usHqdOMZaVxdibbzK2YAFjCQmMffop\nY5dcIh3jcjH2/e8z9qtf6T49q6tjLCWFPv/ud4x973vKx61cSfWorzdWD46yMsaGD2fswQcZe+UV\n3++Skhh74AHG/uu//H+XlsbYF1/47mtrozJlZ9P2Bx8wds01jB05ov5MZs2ia991F23rrcuCBYy9\n9RZ9vuQSxg4eVD5m+nTGVqzQdWpF3HknY6+9Rp83b2Zszhz6XFNDdV+6lLb11MPjofsZCD/8IWMv\nvMBYdzddp6sr+Hn/538Ye+QRxlpbGYuN1VwclprK2NVX02czbSsQHnyQsSVLjP/+888ZGzky+H3j\nMFKP//1fxr79bWk7UFdvmyVQVVWF2267DQDQ2dmJO++8E9/4xjcwc+ZMLFy4EIWFhcjOzsZf//pX\nAMCkSZOwcOFCTJo0CVFRUVi9erVmd9Df/w7cfDMQwLNkCloiRcyiuRkYNgw4fFj9GH5to2XgeX3G\njwd27ybhc8gQydzmawLHxxvTBLgeAATXBADzLo7z56n8gwf7uoO49qHmDuro8K8fL6tSiGgwYZis\nB/3Qqgmkp9vrDuLnNnKNxkagvp7i0tXCEWtqgNxcej+5Syg+PvB5uSbAE90xpu39DoUm0Nho7nm0\ntpJ7jKxUe9DUpF0TsI0Exo4di/0KyfEHDx6MrVu3Kv5mxYoVWLFiRcDzNjVRTDV/0IwBCxZQ+oCL\nenNAGPGvidFBag+/tJRehIkTdZ8eAHWMQ4cG1wT4fyP14J30+PHkE58yxddPyzs+eYZJPefnk1OC\nRQcB9L0Zv21NDXWQQ4b4ZkL1eqmNqIW6dnT47/d6qRMT8wHFBNEE5CGidmkCOTnWhIgGIwEjvvSm\nJnoHGxtx0dXkDx4dBGgnAa4JREbSc+nqomcaCF1dVCe7NYHGRnOh4nzwwJhvG1CDkXqETXSQHWhs\npBEzJ4G2Nup8lYQ+q6AlRHTNGuDVV41fg1sCzc3qE9La2ojdjY5CuGibkkIvZVaWb2hiezsRgFqH\npPX8QO9aArwcavXo7PTf39bmu3CQnsliZnMHAYFJIFSWgBELk0cvBbKGKiul62oVh/lkMXlZA4H3\nCaGwBMzk/WltJRJMSrIvf1C/JoGmJhoxy0MqtZIAF0/0QMuosL7e3ANtaaEOJTo6cKfDOyoj9RDd\nNePHA6NG+bohOjqkNAahcgcZqQcHJ4EhQ3xDRFtaqBwiwXF0d9NfMBIwEiKqty5yElCbJ2AFCbS1\n0X0ZPFi6npo7SE89OAkIE//9UF4ukYDWuTZ84CUvayCIFiZg3zyBpibzJBAXRwMVLWGiRurR70lA\ntAT0koARiPME1F7GhgZzie24KyUxUbmBdXdL+e3NWgIAkUBWlrXuIK2WgPxlNQruDpJbAvxeKvnZ\n1dZL4FZWd7c0ozM6mlwQXV2SXiKfYGXVjGG7NYHKSnKXcr96qCyB7m7g3DlpprIeSyDYRDo5Wlvp\nGYa7JcBzTtlpCejRBPoNCfA8OMFgVhOwyxLgo2i1hsHNYy5OG9UEeCf92GPAd74jvWCMSR2fUXeQ\nEUvAjN/WiCXAfblKmgC/v16v1EG7XJIWdPgwcM010m/M5g4K5g5ijNr3kCHmSUB0Bcmvx9u3kTko\n/P1TswSqq8nCEslOLwloTSLHLZ1QaAJWuIO0WgJ2awK2zhOwA42N5txBRqDFNdDQYG6NVj6KVmsY\nXCgzM2FN7KRnzJD2u1y+o99QaAIREeY7tpoaYOpUY5aAUnRQXJx0f/m9EOty6hS5NgBpcpUZSyCY\ny6O1lcqQmGg/CRjNkhvMHVRRQWsLc2glAd7e5WUNhNZWigg7c0Z7NJERNDVJbcMIeFtzNAETSEuT\nLIHGRupQ7NQEtFoCdrqDeMPhL5GReqilluXnFEnATk2Aj9is0gQGD/ZdKF20BPS4g0RLSxyl87qc\nO0fPGSCLIjLSN5W0FZpAXR1w3XW0j7/IWt0hclRWUsACEJwExJXz9GoC6enq7iBRDwC0h1kbEYbF\ngACzbQsA3nxTyk3FwSOhrBKG7dIE+rU7KCmJbqDoDho71j5LgLsPoqICj2KscAfpIQGj1+CdtAj+\n0vDoILs1AZ4iQ8/Is7AQKC723cc1gagoahe8g+b3UqnzVCMBue6jZAmcO0ftravLmjVwlTSBkyeB\nDz+ke8lJQG9OfY7du4GHH6bf2mUJNDVRgIFWS0CrJWtEGOadqxWJHv/2N2DhQuCtt/yvwYM3jFr+\neoVhI+jXlgAnAdEdNHGidhIw47cN5g4yGx3ENQGlhmGFJhDIEmhv940OslsT4JaA1nq88w7w2We+\n+7glAPi6hPi9VOo81TQBOckqPfeLuQ7R0CAdLxKmFZoAb8cnT/qSgBHiP3+eyrpjhz5LQE89GhsD\nk4CSJWAFCfzkJ/5J3Phz54NEo5rAF18ADz4I3HcfIE9k3NhI9youzrjlr0UYfv994IEH6LMzT0CG\n5GR60KIlMGoUNRI7/GtiY1Tr2BgLjSVghSag1R1kd3QQJwE9ZZcnieOWAOArDnMyMuoOkpMA33fu\nHG3X1xvPcilCyR0kJ4GUFOMkUFNDddq40V5NYNQodXeQ/LpGNQHxN7W1wMqVwMGDvr+xyhJYsgT4\n5S+JCOQkwBOzqb2nWqBFGN6zBzhxwtj5gX5OAkruoORkIDNTmzWg17+mhQR4B6p1ZKD0EoRCEwjm\nDhJDRO2eJ8DdQVrr0dTkGwHU0UHn4bNU5ZaAXneQ/P6quYMAGvUquYPMaALcauHCs1WWwO23EwnI\nR+T8GfM00ikpxuLrtVgCRoRhUROQW3RbtpArprLS9zfcEoiLo/7ByDvS0UHpHBYuBC69lFKuix01\nT9GcmGjcEuDuoECWwJEj0neOJiCDkjuIk4DWMFE9UBoRylFfT99pGRlUVVE+fzmU3EE//zm5QQBr\nNAEt7iCrLAEuLsv9pjwKSZyYpQVNTb6WQG0tRYLwfDVKloCe6CB5ahA1YTgujp63UU1g2zZ6pjxl\nACca0R2UnU0k0NBgngSuvZbOfeCAFKsPUOQMJwI+30HpeQWDFk1AJB8rJou9+y61n4oK39/wEXZ8\nvHFL4ORJIi1u5V16KbB3r/Q9J2YzlgB3BwWyBEQS0AvG6Lf9mgREdxBnZq2WgF7/mhZLoKGBGnpL\nS/A1iOvRW73IAAAgAElEQVTrlclKyRL45BPg0CHfcpidJ6BkCVjlDhLPLyYLEyGO1vRoAnISEPUA\nQLsloFUTULMEcnIkd5CcBLTUZdMm4O23iQwjIijCCJDOU14OXH01uQL0WgIffUTnl9+jW2+ldinP\nrcWvKZ8jYUQTCBQdZNQSUCKBri5g82aa4xLMEjDyjhw9SsnuOAoKfF1CfNCZkGDeHaTVEtBbj+Zm\nuge8bQVDnyQBuTtIDwnohRYSqK+nTigqKngD51kOxeN4A4+J8SWB8nIiGMBeS0CMDjKTNqKqSkpL\nACjfL3GUrme0JicBUQ8ArNUEAoWI5uZKlgAfLeq5VydP0nwDeeIwURO46ipfd5DWENEdO3yjWTgJ\nzJ9PEyzlCdhEEjCiN/HJbGqWQHc3tQnRAjFLAnv2EJnNmuVPAlZYAqWlRPQcchIQ3UFmLAHuDlKy\nBC5coPZt9Px6FpQB+iAJcBYW3UF6SED0r3V2Bp9iLncHqZFAaqq2hsGvx8MZAV/BVmwYSiTAX1Sj\nmoAWd5CRENGODoreufJKaZ8aCfCJXHrqEcwSGDLE3xLQmzZCLUQ0NpYiUaKiyOIT3UGib12sy7lz\nylbhqVO0vrOcBERN4Oqr/TUBrSGSoouE36PrrgP++U//4+UkwNu31mfS2krnUJsnUFMjCdtiPc1M\nFvvHP4BvfpOIxQ5NIJglILqD9GgCPLIMUBaG9+yR3E6lpcC4ccY1AT1LSwJ9kASstATeeAN4/PHA\nx8gtAaUG3NBAjV0LCfBOURw58cYLSOfgwhefkWnnPAEr3EH79tF8DbFjViIBsYPWWo+uLnregSwB\n0R0kWgJ65gkEChE9fZpG06mpviQg+tZF3HoroJBJHSdP0rn4Up8cMTH0rOvqKMV3czM9fz3uIDUS\ncLmASZP8j+dWjFFLQOwQ29v976lcDwCMTxbj5Xr3XeCmm5RJwCpLQCSBnByqJ7+WEU2AMXqmvH9S\nEob/9Cfgv/6LPh85AkybFjijcCDoiQwCBiAJiP61ujr/sEM5tLqDUlN9LRQ18HKLJCCO0Hnjqq6m\nzo9bAvLJTFbOE5BHBxkhge3bga99zXdfIHeQHk2guZmeeX29lMhNzFEPUGfHZ3cGsgSMagJyElBy\nV4h1aW6WCJyjro7Kn5xMbVVOAqdOUecWGQmMGUNiLncHcWsjEFpaJBJgzN9akkPNEtDatnhn43LR\nLH7RugX89QDA2GQx/hy7uymG/4ortFkCRjUB0R3kcgGXX04jdUDqb/RoArW11DZ5X6MkDJ88SXMD\nOjuJBCZPJs1I3q6UIO9zBgQJiJ0tr7CR6CCvN/iMPS2TxRoatLuDlCwBOQk0NUmhgkqagJmVxbRa\nAno1AY8HkLfVYO4grfVoaqL7m5Ii3bezZykLKkdeHvDll9I1gmkCwXIHabUEAPXryOt38iRF/owZ\nQyNO0U0SE0NiMO80s7MlEuDWRjBibm2lzobPmeFpLdSgpAnoaVui2yEtzd8lpGYJGNUEeDK62FjJ\nBSU+x9ZWabKYkXeko4Oe89ixvvvHjSOCBoxZAkeP0n/edpWE4VOnaICwcye1jQkTtF8jN9e3P9ET\nHgr0QRJITla2BEaMoEYSbMUf0b+mhQTkIxI1S0CrO4iXW3xhRHcQbxgVFVRXuTvIjCagNURUrybQ\n0UGRTDznDYcWd5CWevBwN9HlIyeB7Gy6VmWlsXkCwdJGiCQgzhMApE5KrAstVO97jVOniABGj6YX\nXa4JnD5NgxleH3FEp6Xz5AOjqiq6T6KlpAQlS0CvTsPLl5bmLw4rWQJa6tHVRe+xPHy2okISmSMj\nqX587gZA9Rcni+l9R06dksJDRYwcKQ3KjJBAaSn9F0lATBvBGA0Q7roLKCoiSyA3V7pGoHowRveF\nl08so1b0ORJQcwfx9XL//GcalXK3QSDoJQE1U1aPO0iLJdDcTA914kTrooN47HAwS8BI2og9e2h9\nAjEyCJBexi1bgB//WKqr6A7SAv6MRfFXTgIuF2VG3btX2zwBPdFBsbF0vYyMwO4g+XWCWQJyd1BH\nh0QCfDSqhwT4O1FREdwVJJbbjCXAyzdokD8JGLUEuB4gX/tAfr4RI3xdQnJ3kF7I9QCOkSMlN5uR\nyWLcEuADP3naiPPn6b4sWkThr3ISCAQeli4KzwOCBKKjpfz3ounz2GM0EWfRIvKvKUH0r6mRQEcH\nTdQCtLuD9FoCWkggL886TcDrpdGTUgpcMUTUiDto+3Z/VxAgdahbt5KlAPi7g7TUQ40ERo3yPY6T\nAO8MIiOlRWI4OjslX6sIpbQRoiXQ0aHuDuKWk1iXQCQwejR1DHISAHzdQQC1K/69FksgPt44Ceht\nW8HcQWqWQDCiEQlWLKe4TCXgrwvIhWG974g8MohDtASMpI04etTXUpJbAidP0sDgyiuJiOLiaEDF\nrxGoHrz/Ekmg34eIJiXRCIFbAyIJ/OAHFCd9113KkRlyqJHA4cPAihXUgegRho2SgOim4SGiFRVk\nCShFBxnxd6q5ggDz7qCPP6aZqXLw+1VcLL1ERqKDRBKoraVz1tfTuhIiZswgq4Rfw+XyH6V3dCgv\nQK8kDIvkD+jXBJTcQZwElCwBwNcdBOi3BMaNo7ZTU2O/JRDMHaRkCWixAJVIwOv1P5+cBKywBERR\nmEPJHaRHGD56FJg5U7o/ckuADw6io4HZs0kPALT1J7x/kFsC/V4TAOghXLhAsdvy0e3UqeokoEUT\nOHyYRo91ddo0AW4JaGkYbW3+L4zoppG7gxobpQVMzGgCaq4gXi8z0UEVFdSxyaFEAnJ3kJZ6yC0B\nPsKMkLVeuTuI101OAjykUYR8NCy3AIHg0UFyTUDJEhgzhv5qavw1AUAaOSu5g4I9k5YWiQSMuoP0\ntK1g7qCTJ/3bhVZ3kJIlEIwE5JaA3ndEiyVgVBOYOZP6K8akcsbGkmV69KhE+nfcQZMFAak/CVQP\nJUtgQLiDALqJ584pM97UqcDnnwc/FycBeegdT9Vw7px/ZxBIE9DiJ2xtpYasxR00ejR1yq2t5jWB\nQJaAPESUWwJaY5Rra5U7nLg4egGiosiq4otxGIkOSkyUSODMGV89gIOLwxcu+OYwEu9XZyd9p3dl\nMcC66CDeMQayBNLTqR2npdG2Vktg/Hhz7iCrooMuXKA2x+vDoaUe4kQx/hu5MAyEzhIYMoTqyvsL\nPTOGa2upLfAIno4OslCjouh/YiJFtY0ZQ8cvXgz84hf0Wcs1Bqw7CAhMAnl5ZHordchyTaC727/h\nHz5M/6urrXcHtbX5k4DYQfNRzNmzNAJJSSFLw6wmoDZbGPB3B0VESAusa8H58/6iMED369NPgcsu\nk0ZTcneQEU1ALgpzuFx0LZ63CFB2BylZAsFSSQMkDPOFzHl+FvEack1A7Ij4M0xPJzcWzzvEIdcE\nXC6yZsVMmlo0ASssAb3zBAB/6/bQIXoP5Us86hGG5eVUsgTEyXFmNIFPPiHrTB4eCtD7wK+ld8bw\nsWNEANxS4q4gjqQkIgFuCYjQqgm4XAPUEkhIoE5aiQRiYsiVIs83LgdvjHKX0KFDNOqTkwAfKclH\nyHqFYSVLgLsvIiLoc1UVdTqcBPRYAowBL73ku0+rO4h3Rlp1gfZ2KhsXMEVwEpg+XSIBK6KD1EgA\nIJcQ1wN43YxqAqIlEBFBRBcRQXU9d86XaETLggctiAMGHh7qctHf6NH+JJCUpHwfeT20WgLl5dZZ\nAgcPque1F0ecgwb5WgJffUUkIIcW3cGoOyiQJfDee8Czzypf74svgNtuA9at8w8P5eDtV687iE8+\n4yTARWGOxES6V4FIIBAaG8naEkNl+7QmUFRUhLy8POTm5uK/+BxqGbRYAgBNu1bSBeSaAOBLAoyR\nJXDNNf7uIG7Cyeci6J0xHMgdBNDn9HS6Lp8rILorgvk7L1wAHnrIdySvxR2klNo4GC5coAautKg3\nT7ssWgJGcgdxEuDzBIKRgEh2cneQFk1AKYFcerqUlTE1lToftXkC/L6LnR13BXGMGeNLAsOGKUdY\ncYTKEpC3rT/8gcKulRDIEvjqK+CSS4zVQ00YlkcHyUNEA2kCx475poTmaG+nNBQvvQTMmaNeppEj\naZY372C1CsPcxcTdZUqWQFub5A4SoWWeQFMTEb9oCfBBqVaEDQl0dXXh+9//PoqKilBSUoI33ngD\nX331ld9x/MWJj6eRuprZo0UXUCKBykq6Rl6evyUA+I9gu7ulyUxa3UHDhwcnAe4WEC0B0R0UCDx9\nAg8vVbqGCLk7CNAeJqrmCgKkTlK0BER3kFb/M7+/oiUgDw/luOoqIh153Tg6O41ZAsOGScempkpr\nCwDKLifAdzQqJwG5JZCRAfz97+r3IFiIKBccs7Op3VZXGw8RFdHS4tvBiBBHnHJh2AwJyDWBmBhq\n05GRvoM+0RLo7CTyjYlRtgT4bGo5+Ah64cLAZRo5kiyiyEj/bL+BwC0BTpKcqDgSE+kd59qPCK2a\nACcB7qE4cUKZVNQQNiSwa9cu5OTkIDs7G9HR0fj2t7+NjRs3qh4fyB0EqFsCck0A8CWBw4eJAIYO\nVScBsfNqbKSHFRmpzx0knzEsdtB8BjTgqwlozfmuRALirGQ5lDo+rZaAmigMUHlTU8nPquYOslIT\nAMg03rxZ2rZCE7jkEuC735WOTU2ll05NE+AkoOQO4hg9Wt31oASlznP/fqkTa28nSzUujjrkw4eN\nWwLiMwlGAqIlILbpQ4eMk4A8OWBMDN0/ebhpUpKUzpp3rjx8XF4PNRLgixMFw8iRNImL11erJsAj\njtTcQUlJRNxKlrRWTWDYMHpveT9RWdlHSaCsrAyjhOFdVlYWygJkhAvmDpo6lXKvBFopyeulDkkk\ngUOHSE/gJCBP+ctflN//no7lriBA+4zhQYOksE/A318vWgJyd5CWl4gvwK3VEpBHBwHaNYFglsC0\nadTA1dxBWqCHBNTqxsE1AT3RQSNGkHuNIzWVOrxA4jM/J0dNje+8hltvJT+0ViiFiL7wgmQ9iCQ/\nYgTdZ6NpI0S0tqqTgNo8gbY2cp2MG6dcj2AWoPz5xsZKyfVEuFySNSDWX8kSaGlRJwG19iti5Egi\nVt7f6LUEkpPpeJ4MkSMpSb3D1qoJJCeTJVlVRVbA6NH+a0cEgo5D7YVLiQoVsHTpUmRnZ+PQIeD8\n+TRMnz4NgBuA5Dtzu90YNAiIi/PgjTeAO++Uvt+/fz8eeeQRAEBNjefirD3p+61bgVmz3Bg2DDh8\n2IPhw4HLLpO+7+4Gzpxx45FHgFtv9WDOHCAlhb4vLfVcTGLnXx6+XVEBxMe7kZYGvPuuB4MHA83N\nbiQmSscnJroxciRtNzYCDQ1utLUBBw54UF4OtLW5ffyE4vmpXtL2+fP0fXMzUFvrgcfjf3xsrBvt\n7cC5c56LU9zdiIkBPvzQg1On/I8Xtz/5BBgyRPl7l8uDggI638iRQEmJB14v1S82Fmhp8eDFF6Xn\noXR+gJ5PUhKwe7cHHR3A+fNuZGSoHy9ut7QA7e3S9tGjVF7Rh3/99W54vcCnn3pQUgJ4vfT9rl0e\npKT4nz81lbYPHfJcTFRHx7/44ouYNm0a8vLo+zNnpPvd0gKcPCltT50KXLig/DyUtmNjgc8/92DE\nCOn7Eyc8KC6m+9vaCkRE0PlGjHDjyy+B4mIPXC7181dWetDURPWl1BjUPnmZPB5qz3V16r//6ivg\niivcF9eM9mDdOmDSJDfGjgU+/ti/PrW1dL1A9T171o1Ro6TtmBhq/5GR/vcrIQEoK3NjzBip/oMH\n0/H8ebjddH/q6uj9nj1b+v2OHXR8sPs/ciRw8KDnotuG3tfGxsDPb/NmD+rrgYwMN1wu6o+2baP3\nnx/f2AhMmKD8+zNnPDh+3Pd5yMt36BBtZ2QARUX0PHNy6Ng1a9YAALKVVGcRLEzw6aefsjlz5vRs\nv/DCC2zVqlU+x4jFXb6csdGjGXviCfVzzp/P2KxZjC1ezNjevbRv+/btPd9fcglj06Yx9uc/S7+Z\nO5exTZsYKy5mLD+fsTvv9P1+0iTG/uVfGJs5k7HJkxn76CPGrryS14GxgoLA9SwoYOyzzxibMIGx\nr76ifVdeydjHH0vH3HorY6+8Qp9/+EPGVq5kLCeHscOHGWtsZCwhwbcecqxaxRjA2LvvSvt+9jPG\nVqxQPn7DBsZuuYWxRYsYe+MN2jdlCmMHDgSuC2OM/fd/M/boo8GPO3KEsXHjGJs4kbGSEsa6uhhz\nuRj75z/V68Fx/fWM8eqOGMHYqFHBr8cxZ47vfXjiCcaefJKxwYOlfV4vY9HR9HnXLnq2iYmMNTQo\nn3P5crq//Jndfz9jf/iD9ExOn6bvZ8+WfvPNbzL2979rL7cc3/seY7/7ne++K65g7Kc/pc+lpXR/\nGWNs6VLGhg4Nfs6nn2bsP/+T6t7Wxthvf8vYAw/4tq1rrmEsOVn591lZjJ08KW0/8QRjjz3G2Pr1\njN1+u/JvamsZS00NXK477mBs3Tppe8cOup8PP+x/7NKldO+//JKxvDzad+QIY+PH+9bje9+jc1RU\n+P7+//0/xu69N3B5GGPs4EH6PX/Xu7sZi4hgrKND/TfiM2GMsexsxn7zG+pjOJ54grGXX1b+/fr1\ndC8Cvev33MNYYSFjt93G2JtvMvbLXzL27//uf1ygrj5s3EEzZ85EaWkpTp48ifb2dqxfvx7z589X\nPZ67gwLFw65eDTz9NJmf771H++SawJAhvibX4cPB3UFvvQW89hqZXwcPSkq81slicXG+5rPcHfSd\n7wBf/zp95u4gI5qA2uplcnCXiRgdJHcHtbUBCxb4/zaQO0jEiBG+7iA+F+Hqq9XrwSGmBhkyRLsr\nCNCWNkKc+KUUHSQHd//J3UGBNIFAIbpaoOSqqa+X0gaIguOIEcH1AF7utjYpNFgpn1NLC11DafKV\nfFLS978PrFlDK3EphYeq1UMOuTuIPwe5JgCQ7vDVV1IaaUBZ2+Dll7uEtGoC/Nq8HbpcwSOEKit9\nXViDBtE+0R30wgvAgw8q/16rJpCUJLmD1JLgBULYkEBUVBRefvllzJkzB5MmTcKiRYtwiZKydBEJ\nCfSgA8XDZmbSUnRXX63sD+QkwDWBtjbqqMaOJRKoqfGPVIiLA+bNo5Wa5s6l2GJRE9AiDMfH+5OA\n2EEvXCi9RPJ5Anz2baCJXDU1klDEEUwYVooOEjvKhgZaxFyusQQShkUkJdE5KyulumqNEOIzhgG6\nllpkkBK0zBMQJycpieRy8OctTyAnXgPwrVug+68FStFBDQ3SM5ZrAlpJoKmJ/pO7wv958M5Trgsw\n5h+PPmYMcMMNwCuvKIvCgHR/A81GLyvznWkciATy8kib48nzAOX1BAKRgJZBzKBBVHaR9IIN+vhc\nH460NArfFYXh6Gj1BeG1agIiCcgXxdGCsCEBAJg3bx4OHz6Mo0eP4kc/+lHAY/kD1zIpIj1devii\nL11OAjyHB8+fk5hIN1YkgYICKS3yvHnABx/4WgJaQkR5BIcaCYiQC8N8Nuz773uUfwCqa3a2vhBR\npeggUTzlL654TkC7JQCQuMZDNPl1//lP9XpwiJbA4MH6LQG1eQK8IxKJPjaWrhcZ6Z+biENOApww\nedtSChE1SwJKI2iRBERLICdHOZeTHDEx1LbEusvnbrS00PsjJwHy0ftbS48+St+pkUBkJP2phR93\nddFAQcw+yq8hF4YBdUtAvsZwS4sUaipCKwnw4AY5CeixBDgJBFroR4TWeQKiMNznSUAP9JIAj5gR\n4fVSA+AkIG98Q4eSaSo29F/9ipa3A6TJJbxT0BoiKloCTU3KGTE55GkjAGrkgSJ3amooMkNOAmqd\nEO8oA1kCvAOSJwnTagkAdG/5iJPXQ8tcBJEEhg/XF/4mr0dnJ93HyEjfSV1imfjoWA1q7iCOjg5p\nEhCH1STQ1YWLQQP+5587F/jLX4KfU04CaosAjR3rTwJqqQmuuIIsgSlTtNdFxLlzNEAS7z8vn5Il\nMHYsvbc1NVKfwOshWhutrWRBykngwgV9gxgzJDBokDESCATRHXTmDFlRwXRgOfosCYgrcQWDaAko\naQKcBOTxyUOH0oNUi+ceMoQavTxENJCpy2cMchLYv59eGDXXA19SUUzpEBsLXH65W/kHUCYBPamk\nAX8XB39p5TnjtY6kADLx5SkdeOSVGvhiOLzsK1f6xuwHg5I7SJ4pVa4JNDWpPw9A3RIQNYHkZOtJ\nQKwHb7NKloDLpW7FiFCzBOS+9Oxs//V81ZKUuVzA8uWB50AEIgGl8N9A7qCoKBr57t8v3d+oKKq/\nqDe1tpJ1ZFQTAIgExP5Gryag5A4KBL2awM6dRHSB2q4S+iwJ6LEEuH9fBGP0UgUigWHDyAceqEH/\n4AfSdH9uHosvf3k5+dL5NeXC8N69lGZWDcnJVK7YWN/OM5C4VlNDswi1CsNKuYO0WgJ63UFiR6hF\nE2hvpxealys1VftIClB2B0VF+dZPrgkwFtgS4LM7RRIQLRpOAnJ3kNr91wL5M+edPxeGRZ+4VgSz\nBBgLbAnoyU8jwggJ8JUDlXDJJcC+fb71l+sCLS3qJKC1/Y4a5UsYRtxB1dXWWgKiJlBbq18UBvoB\nCWjJlqekCfAZlikpgS0BIHCHcNttvguqyB/cBx8Av/kNfearWkVFSTMs9+yhfDdq4MnKxNFDbCyw\nY4dH8fiODmoYo0frnzEszx0k1wQA8+4gsSOMi5NiydWgd9FsOdQsAdHSkWsCgDZLQO4OEjWBlBSp\nEwq0tKeeeogdZ3093T/REtB7/mCaQHs7DWwyM/1JgK+rbUVdRMhFYYDew9WrlWfVAiQO79vnW/+4\nOGDrVk/Ptpo7SA8JPPMMWTkcwYRhJRJgTL8loFUTAPTrAUAfJgE97iBumosNj/vY+UpegDoJ6Jne\nL28Y58/7LysH+FoCwUiAWwIcgTQBPjJPS9OnCQSLDlJyB3Hi0NpJy0kgNja4JmCWBJQ0gUDuIC5c\nBtMEOJkrXUN0B/GMoi6XfjNdhJIlkJWl7A7SimCWAB84cNFRhLyD04NAmUSVLIHISOD++9XPd8kl\n1C7lloD4TFpaiATk2qAeTSA11bctygd8PIUFR2Wlb3QQtyK0PieumalFAnZ3S+TP114fUCSgxx3k\ncknWAPev2UUCcj/h+fOSW0Z8UdPSqMGfOgVMnqx+vuRkagRyS+DSS92Kx/M6cEGZI9CIRyk6SE0T\nEC0Bfk6Nk72Rm+vbccTG0uzSQLCCBOTuIPk6yiIJ8HIF6rAHD5bSQvNryDUBLj53dJjXA5TqUV/v\nSwJGrqFEAqImwDsYJRKoqPBfP1gr9FoCwcAjkeSWwLRp7p5tJU2go4PeVT2590XISWDfPsk13N2t\nHCIKaCcBPhdBTf/jLsCICDo2I2OAuYP0WAKAvy6gRgJilA7PHBloVCiHvGHU1vrmVBEtgV27AovC\ngFQ/eSel9hLxOogkwBiNgNQikLQkkFOyBPSY0gDlc3r/fWlby5oCdriDAmkCvFyBnnlCAnD8uLSt\nZAlER0sjXitIQMkSGDqUXn6v1xpLQK7RBLIElNYPNloXEXryQnFMnCgljuOQWxtK7qC6OnoPtYjo\nSpAP+KqraW2Cjg5pdTuxXcm1JC0IpAvIdZlHHwVmzdJ+bo4+SwJ6LAFAChPl/rVQuoPq633XFgWo\nQXR2BhaFASk7qZwEdu3yKB6vZAk0NlLHp9cdFEwT0CMKKyE2FtizR7keHOJEMSOQj6DV3EHiMw5m\nCShdQ64JhIIEUlOl52zUEmhv93cH8XrwkaYSCZSX20MCZWX6SSA+niKYxPrHx0t6E3/35CSgdxAj\nh/xdb2ykZ3/kCN0vubtMryXAr6E2l0YeofXQQ9r1ORF9mgT0vKyiOAyE1h3ElxoUF5Tg/sFAegBH\nSop2TYDXga+FCxD5ifnw5YiOJpeT16u+spiaO8hIo+NQyowph9WaQLAQUV4uPdaf2jXi4+m5m40M\n4mUSr8GFWU4CRi0Bfm7+X+ycuTto0CCqgziyNmMJqGkCjJEloNcdBJA4LLcE5CTPXau849ajByhB\nPkrnkVoHDihrJvyd12MJJCSor5ds9t3g6LMkkJio7wYE0wQYo+/FTs0qdxBAL60oDPMIE60kIO+k\neOZBOTgJJCbS9bq6KLpIzRUEkCnNUwgEcgelp/u6g8xaAnFxlPEwEOxyB8mjg/RoAnIoaQKiJWA2\nMoiXSW4JiCRg1BLg5wb8c+7wc7pc9C6ISxjaoQlcuCAts6kX//EftEIYR3w8MHGiG4DvWgNDh1K7\nBfTNEVCCXhIwagmo6WYDngRGjAC2bNF+vJomEBtLLoK6OnK9iC8S963rJQG5Oygqyn+R6bg44IEH\nKAdRMCQn69ME0tOpwfOUE+fOBbYEAKpjc3Ngd1BGhvWWQDBNgK8qZhSBhGE1TUCvJaCUOyhU7qDk\nZOssAW4R8mgUce7B8OG+LiE7NAEjojDHrFm+vxWtDfH+ix4Bs+4gudXf2Ej6hBoJJCRQX6CXBLRq\nAkbRZ0nA5fJdRjAY1DQBl4tu5KlT/otwxMTQVGyt0S+A/0M7f578lXJLAAB+9zttI065O4jnlleC\n6NLio8RAorB4TiCwJTB8uDlhWOmaBw96Ah5jZ4ioGB0kd7dZoQmI7iCrSUB0BzU2WmMJyPNSiecU\ndYG2Nrqm0QGAGgmcPq1fD1BDfDywd68HgC9BWkkCSpbAVVdJJCBGBgF0f2mdE33X2LnTo/id2qxt\nveizJKAXapoAQJ3MyZPKKzHpnRAjjg54fpcxY5TXF9UKuTsoUM4dJRLQYgnISUBJE5BbAla4g9Q0\ngXfeoftl12SxUGgCVloCcotGLgxbYQnwz2ICPJEEeOoIPso1GlWjRAKdncDzzwO33GLsnHKIbUu0\naMR+wKwmIOpuAL3r06bR+1ZaqjyPYsgQfR03d+sqYcC7g/SCu4PkmgBAN1rJEjACcXRw4QI1lMGD\nJaevzrwAACAASURBVHeQnlEAh5I7aPRot+Kx1dVSPXgjDSYMA76CMN9WsgSsdgdlZbn99n/+OTB/\nPvDXv9ozTyBYiKhRElDTBKwShtUsAas0AYDKPHMm1UPNEjDjCuLXkAvDv/gFddTijFwzoIghNwBf\nMhOTSZrVBMRMwACRQGoqzVvYvl2ZBN5/X32tBSUkJgJjxrgVvxvw7iC9MGoJ6IWoCYizd7k7yApL\nQMs8Af47bglocQdFRflOgJJrAoMH0z7eeVoRIqpUjx/9iBbVWbu29ywBve4gee4gu91BXBg2ownw\nOspJgF9HHEHzRYEAc+Gh/HpiXb74grLzvvqqcetCDnGdYbvcQTz1Cwd3z+Tn0/uuRAJZWebcyyIc\nS0An1DQBwFoSEN1B58/TSDk11V8Y1oPkZH+T/dAhj+KxZtxBYsen5A6KjfVdDMcKS+DIEd96fPAB\nLRLy1ltAcTHlirdDE1DLHcTLZcQSUJsnYFV0kHyRH7vcQTwvlTiCnjKFOmvAXGQQv4ZIAu+8A9x9\nt7Y1ELQiLg746isPAHV3kFkSULIEOAkAxtNqiEhMVNfNHBLQCf7weZpnOy0BTgK8kxQtASPuoGHD\npPAyQD3nTksL6RDc9aBHGOaZGsXtYCRQWRmcXAJBSdv40Y+A556jst9xBy2ybXd0kFUhovJr2Bkd\nZIcwDPj70vk5p0+ndM1dXebdQdxC4mhtlUKmrUJ8vHS/RDITowTNagJyS0AkgYiI4O+cFsg1gc5O\n4N136bMjDOtEbCw18Bkz3ADsI4HhwynUDfB1B5mxBL7/fVormSMuDsjIcPsdx0f83Nw0YwkouYM4\nCVy4QOdtajLvFhg6VKoHY5QTfeFC2r7rLvpvNgWzWtoIXj+9aSPkUNME7HYHWWUJyBdwyc+neogj\n6EGDqA2VllpPAka1skAQ3xHx3gwbRvofYF4TSEggUuT6BvfRT59OmYXVlo3Ug8REID3d3bP95ZfA\n7bdLEVqOJaAToikoJ4G6OmtIYMoUChEDfN1BZiwBPnLlUPOly/Ou8AVp5DmRlKBEAkqWADeBjx2j\nNQv0+DeVrikKhDy9N8/OefXVlBXRzGhNiyXQ2mpN2gj5NeyIDmKMRoNeL52TawJGrsHvs9wSUIqv\nB2hi49695jUBvvgSh1GtLBB42wd863HVVRT2ffCgeXeQyyVZ+YBkCaSnkwVrBeSaQHk5PftPP3Xc\nQYaQng4UFXkA+JMA/94sRo2iRldT4+sOMhMiKkdsLHDihMdvv5wEUlMp9pqn2AiEmBhfogmkCVy4\nYGwtUzni4oDTp6V6yDsdlyv4ojvBoCWVNBdZOazWBKyIDuJrHnd2UnmTk+n+mLEE+ExxOQHyvFTy\nNQouu4yeh1lNIBSWwLBhkiYg3puYGODBB2mNjwsXzFkCAP2eu4TUltw0g8RE33edexm2b3dIwBDS\n0yXWtosEXC6yBg4e9LcErGrsapqAPPlWSgp11lr89notAStIQF4PpY4sJcW8tREsOoi7VsTfWGUJ\nWOUO4uXyen3Ly9ebiIyURvZ6ICcBNU0AIEtg3z7z7iC5JWAXCYiWgNiuHngAWLdOv9tPCXyAx5h9\nJCASZnk5cPnlEgk4moBODB0KjBzpBmAfCQAkDB044K8JWGUJxMUBgwa5/fYruYOOHdMmUOnRBKwk\ngZQUd8+2VZ2lCNEd1N1NfxERvpZOfb0vCfAFOvRcQ00TsCo6CJBIQFzVKyWF4veNtislS4DnpZJ3\nntwSuHDBnOipJAxb7Q4aNgzwet095xfvf0YGrQho1goAJEugtVWKOrMSiYlAfLy7Z7usjDSz4mJ6\n7o4loBOBNAHAXLijCE4C3B1kNkRUDrkvnUOJBKqqtFkCeqKDrHQHyXO+W90ZiPXgriDuBhFJQHQH\nPfQQ8Mgj2q/BCYVHntmhCQDqlsC5c8bPr2QJ8Gci7zyHDKG/YcPMiZ6hsASGDpUS3im1q8cfB668\n0vx1+KDIDisAUNYEcnNpZvLRow4J6EZ6upRPRE4CqanmTUMOuTvIbIioHHFxwNmzHr/9SiQAGLME\n1DQBq91B5855eraNLJau5Rq8HmrrJcjdQamp+kIWIyKoU9y2zdNznagoe9xB7e2+GgZPj2yVJRAf\nDxQXewAol3vGDHOuIH4Nuy0BWuPZ03P/5ee/9FJg/Xrz1+GWgF0kkJ4OnDrl6dkuLyc95mtfo22H\nBHQikCZglSsIIEvg4EGyOgYPpvO3tJAPz4rGPmMGLVxRUeG7X56LnXcURjUBNXdQWRlZOWaTfcn9\n9UYWSw8G0R2ktHJaW5uUOM3sdfj9kruDrBCGAWV3EO8ErLIERo6UrGWlztMKEpDnyLfDEuCRO9XV\n9rQrDrstgXHjiGS4NcAzrXISCFtN4Nlnn0VWVhamT5+O6dOnY/PmzT3frVy5Erm5ucjLy8MWIRf0\n3r17kZ+fj9zcXDz88MN2FAtDhwLR0W4A9pLA4MH0cM6eJUsgIkJyzVjR2IcOBe65x41f/Ura19lJ\n5xdfUD6a1WoJyMNQxRdVJIE9e6hxmp3iT8Kcu2fbDksgOpruTXe3NEIHJBKQu4KMIiYGuPJKN4DQ\nuoMiI/VrGPJyiyQwejQQEeEGoFzu73xHn6tMCfHx9oeIAsCoUW6cO2ff+QH7LYHISFpPoKSE2tX5\n8zSou/JKEoitqJctJOByufDYY4+huLgYxcXFmDdvHgCgpKQE69evR0lJCYqKirB8+XKwi47UZcuW\nobCwEKWlpSgtLUVRUZHl5RKTR4kkUFAAPPWUtdfiawfzkVpaGs2wtaoxPvEEUFgohadVVRHhiB25\nHktArgkkJfn6IkV3UFWVeVcQ4D/fwY4Rm+j/55oAIO2Tu4KMQtQY7IoO4laNPKQ1JcV4u+KTKDlG\nj6Y4ekD5eWRnAzfcYOxaHKEIEQWo3VdX2xNwwMEtAasidZTA3cuVlTSg42sS7NplTa4l29xBvHMX\nsXHjRixevBjR0dHIzs5GTk4Odu7ciYqKCjQ2NqKgoAAAcPfdd2PDhg2Wlyk9XYpLF0lgyBBgwQJr\nr5WfTxYBD29MTSUWt6qxHz/uwfz5wMsv07bS2qyJidKqUMEgdweJy24CvpYAYB0J1Nd7erbtGrHx\nzlPJHSSPDDJzjQ8+8ACwLzooLQ348EN/6yU52fj5X32VZrhyjB4t5aWyq/MMhTAMAN3dnj5vCQBA\nfLwHX35JeoDRRXcCwTYSeOmllzB16lTcd999qLsYsFteXo4soafKyspCWVmZ3/7MzEyU8VkRFkJN\nE7AD+fm+0UZGlpYLhscfB37/e2ltVjkJRERQwzQiDKuRAA+rs4IE5OsJ2NXpcKtGJAEufFvpDpJr\nAla7g1avBl56CfjLX3yJy4wlMHWq7/yCUaNo9NzdbY97DgiNMAxQW+WWgF0kIGoCVoi0Shg7liwB\nLgpbDQPTSwg33ngjKvkqEwKef/55LFu2DM888wwA4Omnn8bjjz+OwsJC46UUsHTpUmRnZwMA0tLS\nMG3atJ74bD5jU2378889aG6Wpt0fOuRBUpL68Wa2r7+eokU8Htqml9aD/fuB3Fzz53e73di+3YOW\nFuDkSTfOnqXz8+vx42fNkvKqBzpfTAxQVyf9niZyebB1KzB7thteL7B7t+fiy+RGTo75+7V7t8dH\nfP7iC8/F9V/N3x9xOzXVjfp6uh6RDtW3vNyDTz6h781ej6dg9ng86OhwIzqasj9WVABdXXQ9s/Up\nL/fgF78AXnjBjVGjpO9TUtxISLD2flVUAJ2ddH++9jXz90fcvvpqN1pagO3bPXC5gLY2un9Wvn9U\nD2DPHg9aW629P+L28ePAhQtuNDaSVSt//6y43uLFbqxeLW1reT88Hg/WrFkDAD39pSqYzThx4gSb\nMmUKY4yxlStXspUrV/Z8N2fOHPbZZ5+xiooKlpeX17P/9ddfZw888IDfuawobno6Y1VVjF19NWMf\nfGD6dJpx992MAYxVV1t73m99i7G1axn7wQ8YW7XK+HleeomxhQt996WlMXbhAn2Oj2esqYk+JyYy\nduyY8WtxtLYyFhsrbb/wAmNPPWX+vHIUFDD26aeMHTjA2OTJtG/TJsZuvpmxV19lbMkS89eYMYOx\nnTvp8xVXMPbRR4x9+SVjmZmMJSebP78c3d3S59tuY+y++6w792WXMbZtG2NJSdadU46oKMa8Xvoc\nE8NYW5v11/jTn+jZ5uXRs7ADpaWMjRvH2E9/ytiPf2zPNbq66FksW8bYz35m7ByB+k5b3EEVQuzi\n22+/jfyLCbbnz5+PdevWob29HSdOnEBpaSkKCgowfPhwpKSkYOfOnWCMYe3atVhgtZP+IuLjPaip\nsd8dJAc3360yS6VRFfDxx8ruID1QypcjuoTE+/Xee2SimgW3NsTlDO0w21NSyO2jpglY4Q5KTAQ+\n/tgDwNcdVFtrj4tLTKVhRhNQQny8B4cO2edCASRdgEdtydueFais9ITUHWSXJrBjhweTJtGqZGHl\nDgqEJ598Evv374fL5cLYsWPx+9//HgAwadIkLFy4EJMmTUJUVBRWr14N18XWvHr1aixduhStra24\n6aabMHfuXDuKhtRU9AoJcE3AagHs6qtJ3EtLM0cCV1zhn1GRk0BnJ22L2T2tgMtFnUFjI127pcV/\ncW4rkJpKETWDBtknDCcmSjNt5dFBViwuEghmNAElZGQAhw/bF1EDSLpAzMUQVTP5odSQloYeYdjO\n6KD6empfVgyM1DBlCvCnP9kjDNtCAn/+859Vv1uxYgVWrFjht3/GjBk4wHMw24jcXHevkUB0tDU5\nxgHJDzh9OnD8OL1UZkggP19aEYmDk4Cd92rIEDcaGogE7HpZeQI/pXkCDQ3WrQA1frwbgC8JAPZ2\npgBFf1mZs+aqq9zYssXecnNLIDbWvlH6vHlurFplb3QQD9csLweuucaea7jdbuzbR5/7jCUQzuBz\nBXrDHWRHQ4yOplTLH3xg/SghKYlG6XbeK54KGbDPbOfuIHGegBgdNGGC+WuIOV7EEFHAfhJ48klr\nz0dhotasjKUGbgnEx9sTHgpI+YPa2+11bQ0aRHMr7HIHAWQJAH0sRDRc0dzcO5pAWpq1jV2KFCD3\nzJAh1r9MobAEGPP0kICdlkBDg3LuICvdQfv3ewBI1+H3zIqUEYEQE2OtT7262tOzDoVd4CRg5yh9\n925PzzoMVmf3FJGWRut22EUCHo8H+fn0PlqR+VSOAUcCaWm9ownYZQkAtJTdmDHWnzcUJJCYKM3d\nsMsSCOYOsooEeOw7J4GICLqO3ZaA1eC6TCjcQXZNFOMYOtReMgOkCWN2WgIjRpBOY4d2MuBI4Ior\nek8TsLKxc00AAObMATZtsu7cHKEggbFj3SGxBEIRHTR8uBuA73Xi4/seCdx2G81zCIUwbKcl4Ha7\nMWyY/fefB33YRQL8XbdDDwAGIAn0liYwdSrN+LQDLpc9vsJQkEBvaQJ2RAfJNQGAiL+vkUBEBM0c\nDkWIqN2WwLBhobEEAHstATsx4Ejg1CkPqqooB7udfkI5oqOBr3/duvOJmoBdCAUJ1NX5agJ2uYOU\nNAGr3UGlpR4AfZ8EPB4PRo8OjSVgJwl4PJ6QuIO4JWBX2gi73/UBRwI8H75dscn9CaEggaQkSRMI\nZYioGB1kBQmIOfL7ujsIgO0kwC0BO91BAELiDuKWgF0kYDcGHAncfLMb1dWhdQXZAVETsAuhIIGp\nU9295g6ycsGXxEQgOdkNwN8SsDs6yGq43W5kZ9vbqYXCEuCaQCgsgfh430R8VsLud33AzRNITKQO\nra+TQCgQak0g1CGira30XYQFQ6HERCKUri7K6sonBfZFdxAAPPoopXSwC/3NEuiregAwAC2BDz7w\nID2975NAf9EETp/22G4JKEUH8f9WuIIAIoGyMk/PNbirsS+SgMfjQVqafxoRKxEqTeDKK4FFi+w5\nP0damr0kYPe7PuAsAYBihxsbe7sU4Y9QzRNoaKDRs12jwvh4cgU1N0sme0QEfbYiPBSQcgeJRMOv\n3ddIIBRISJDW/7UzOmj8ePqzE4MHW9eOegMDzhJwu939whLoL5rAdddRrv/2dnKh2OFXdbnoJa2t\n9e2gY2KstQQiItz9ggRC0bZES8DOeQKhwKxZlNzNLjiagA1IT8fFxUscBEIoNQE7Mz0C0vKeoosj\nOtpaEpCvXgYAzz9v3ySfvoxQuINChehoYNq03i6FcQw4S8DjcTQBrQgFCRw8SJqAnTnfASmFuNwS\nsNIdVFfn8SOBvLy+5yoIRdsKhTAcinqEAs48ARswdGjfJ4FQIBRZRBMSJEvAThJISSESEN1NVruD\nlDQBB8roT5ZAX8eAIwFHE9CO5GT7LYG5c2n94oaG0LiD7NIEKIsnrZ3b10kgFG0rFJZAqDQBu2F3\nPQYcCQCUka+vzu4LJeLjiQD44h92gIu2VVX2u4OUSMAqV43LJWVE7eskEAo4lkD4YMCRgMfjwS23\nAH/4Q2+XxBxC4e/kHVttrX0k4PF4ekigL1sCABAZ6UFdXd8ngVBrAnbOE+gPcDQBGxAVRYuwOAiO\npCTqPO10n6WkAJWV9msCnZ2+moCV0UEAlb8/kEAoEIoQUQfaMOBIwPET6oPdJOB2u0NmCQD2uYMA\nID3d3S/cQaHUBOzOHdQf4GgCDnoV/cUSUCKBjAwgK8u6a1CYaN8ngVAgFIvKONCGAUcCjp9QH+wm\nAY/Hg9TU3iGBDRuAGTOsu4bX62gCWhEfb78l4Lzr2jDgSMCBPoTSErDTHcTdPnal+wUcTUAP+PoL\njiXQ+xhwJOD4CfUhKYle1FBoAqG2BKzGmDHufkECoWhb/B41NjqaQDCErSbw5ptvYvLkyYiMjMS+\nfft8vlu5ciVyc3ORl5eHLVu29Ozfu3cv8vPzkZubi4cffrhnv9frxaJFi5Cbm4srrrgCp06dMlos\nBxaDz6ew2xKorQ29MGw1HE1AHxIS6Lk78wR6F4ZJID8/H2+//Tauu+46n/0lJSVYv349SkpKUFRU\nhOXLl4MxBgBYtmwZCgsLUVpaitLSUhQVFQEACgsLMWTIEJSWluLRRx/Fk08+aaJKgeH4CfXBbhLg\n8wQA+0NEAXs76NpaT7+IDgpV24qPpxnpTu6gwAhbTSAvLw8TJkzw279x40YsXrwY0dHRyM7ORk5O\nDnbu3ImKigo0NjaioKAAAHD33Xdjw4YNAIBNmzZhyZIlAIBvfetb2LZtm9FiObAYobAE+Cg9FJaA\nowmED/jzdiyB3oXlmkB5eTmyhLi7rKwslJWV+e3PzMxEWVkZAKCsrAyjRo0CAERFRSE1NRW1tbVW\nFw2A4yfUC7tJgGsCgL2WAF/5yc4O+pJLHE1AD/jzdjSBwOjV9QRuvPFGVFZW+u1/4YUXcMstt9hW\nKAfhg1BpAoC9lkBkJBGBowmEDxIS6F7x9Zgd9A4CksD777+v+4SZmZk4c+ZMz/bZs2eRlZWFzMxM\nnD171m8//83p06cxcuRIdHZ2or6+HoNVFjhdunQpsrOzAQBpaWmYNm1aD1Ny31mg7f379+ORRx7R\nfHy4bot+QjuvR4/MjdhYe86/f/9+XHUVPY9jxzzweOyrT2ysB198AVxzjT3n/+STF+H1TkN0tD3n\nD9U232f39bxez0X3nD3nf/HFF3X3D+G4zffp7R/WrFkDAD39pSqYSbjdbrZnz56e7S+//JJNnTqV\neb1edvz4cTZu3DjW3d3NGGOsoKCAffbZZ6y7u5vNmzePbd68mTHG2CuvvMIefPBBxhhjb7zxBlu0\naJHitSwoLtu+fbvpc4QDQlWP9esZAxg7fdqe82/fvp199RVdo6jInmtwTJ7MmNBULcdPfrKdAYw9\n9JB91wgFQtW2bryRsWHD7Du/865LCNR3Gu5V33rrLZaVlcXi4uJYRkYGmzt3bs93zz//PBs/fjyb\nOHEiKxLe7D179rApU6aw8ePHs3//93/v2d/W1sb+5V/+heXk5LBZs2axEydO6K6IA3vwj39QB11V\nZd81ysvpGjt22HcNxhj77DPGOjrsO//GjVSPxx+37xr9Cbfeytjo0b1dioGBQH2n6+IBfQIulwt9\nqLj9Ajt2ANdfT75uKzNuimhuJu1h925g5kx7rhEKbNsGzJ4NPPUUsHJlb5cm/LF4MVBcDBw61Nsl\n6f8I1HcOuBnDop+tLyNU9QjFPIGEBCAiwl5hOBQ4fNgDoO8Lw6FqWwkJ9oaHOu+6Ngw4EnCgD5wE\nYmLsuwZfXayv55DhHVpfJ4FQIT6+7z/z/gDHHeQgICoqgDFjgPZ2e6/z618DDz7Yt9d+Pn4cGD+e\nXEFPPdXbpQl//PCH5ALcvr23S9L/EajvtHH+pIP+gLQ0a9Mtq0FIJdVnkZhI/x1LQBvi453ZwuGA\nAecOcvyE+hAfD3z6qX3n7y/PAwD27fMA6PskEEpNwE53UH9pW44m4MBBHwHXTfo6CYQKjiUQHnA0\nAQcOLER8PPDSS8D99/d2ScIf69eTlfnii71dkv4PRxNw4CBESEx0LAGtWLSI/hz0LgacO8jxE4YX\n+ks9AKpLfyCB/vJMnHpow4AjAQcO7ER/IAEHAwuOJuDAgYW4/HLgxz8GFizo7ZI4cCDBSRvhwEGI\n4FgCDvoaBhwJOH7C8EJ/qQdAdbnvPmDq1N4uiTn0l2fi1EMbnOggBw4sxF139XYJHDjQB0cTcODA\ngYN+DkcTcODAgQMHihhwJOD4CcML/aUeQP+pi1OP8IIzT8CBAwcOHNgGRxNw4MCBg34ORxNw4MCB\nAweKGHAk4PgJwwv9pR5A/6mLU4/wgqMJOHDgwIED2+BoAg4cOHDQz+FoAg4cOHDgQBEDjgQcP2F4\nob/UA+g/dXHqEV4IW03gzTffxOTJkxEZGYl9+/b17D958iTi4+Mxffp0TJ8+HcuXL+/5bu/evcjP\nz0dubi4efvjhnv1erxeLFi1Cbm4urrjiCpw6dcposYJi//79tp07lHDqEX7oL3Vx6hFesLsehkkg\nPz8fb7/9Nq677jq/73JyclBcXIzi4mKsXr26Z/+yZctQWFiI0tJSlJaWoqioCABQWFiIIUOGoLS0\nFI8++iiefPJJo8UKirq6OtvOHUo49Qg/9Je6OPUIL9hdD8MkkJeXhwkTJmg+vqKiAo2NjSgoKAAA\n3H333diwYQMAYNOmTViyZAkA4Fvf+ha2bdtmtFgOHDhw4EAHbNEETpw4genTp8PtduOjjz4CAJSV\nlSErK6vnmMzMTJSVlfV8N2rUKABAVFQUUlNTUVtba0fRcPLkSVvOG2o49Qg/9Je6OPUIL9heDxYA\ns2fPZlOmTPH727RpU88xbreb7d27t2fb6/Wy2tpaxhhje/fuZaNGjWINDQ1s9+7dbPbs2T3H7dix\ng918882MMcamTJnCysrKer4bP348O3/+vF95pk6dygA4f86f8+f8OX86/qZOnarazwdcVOb9998P\n9LUiYmJiEBMTAwC47LLLMH78eJSWliIzMxNnz57tOe7s2bM9lkFmZiZOnz6NkSNHorOzE/X19Rg8\neLDfufuL0OPAgQMH4QJL3EHiJISamhp0dXUBAI4fP47S0lKMGzcOI0aMQEpKCnbu3AnGGNauXYtb\nb70VADB//ny89tprAID/+7//ww033GBFsRw4cODAQRAYnjH89ttv46GHHkJNTQ1SU1Mxffp0bN68\nGX/729/wH//xH4iOjkZERAT+8z//E9/85jcBUIjo0qVL0draiptuugm/+c1vAFCI6F133YXi4mIM\nGTIE69atQ3Z2tmWVdODAgQMHyuhTaSMcOHDgwIG16LczhrlLqq+jra2tt4tgCU6cONHbRbAEW7du\nxd69e3u7GKbR3t7e20WwDM67bg79igQ++eQTPP300wCAyMjIXi6NOezevRu33347HnnkEWzbtq3P\nNvR9+/Zh9uzZeOaZZ9DZ2dnbxTGMffv2Ye7cuViwYAGOHj3a28UxjE8//RR33nknnn32WRw5cqTP\ntivnXbcO/YYEXnvtNSxZsgTPP/881q9fDwB9stNhjOGpp57Cgw8+iFtvvRWjR4/GmjVrUF1d3dtF\n043nnnsO3/72t7Fo0SKsXbsWUVEBg9HCEt3d3fjud7+L7373u3jggQfwne98B1999VXPd30JBw4c\nwEMPPYSbb74Zw4YNwx//+Ef8+c9/7u1i6YbzrltfkH6BLVu2sNOnT7P33nuPZWVl9ezv7u7uxVIZ\nwzvvvNMzT6KsrIwtXLiQtbS09HKp9OMnP/kJu+eee3q29+7dy9rb23uxRMbw17/+lTU3NzPGGCsq\nKmLXXXcda21t7eVS6cdvf/tb9q//+q+MMcYaGxvZ008/zb7+9a+z48eP93LJ9GHbtm395l1/9913\ne/1dj3z22WefDS3tWIPXX38db775JhoaGpCXl4fs7GwkJSUhNzcXb731Fk6cOIGvf/3r6OzsDHtz\nUV6XCRMmID4+Hjt27MA3v/lNdHR0YNeuXWhtbUV+fn5vF1cVvB719fXIy8vD5Zdfjj/96U/Yt28f\nfvzjH2P37t3YvHkzuru7MXny5N4urirkz2Py5MmIjo5Gd3c3Tp48iYqKClx//fVISEjo7aIGhLwe\nkZGRWL9+Pa699loMHz4cO3bsQF1dHU6fPh3WYdkejweVlZU984rGjBmDxMRETJgwoc+96/K65Obm\nIj4+Hh9++GHvveshpRwL0N3dzVavXv3/27uzkKjeNw7g32mMzDAVF7KyErSoGA1DvVBUxMoSpTEl\nlQoXBKWuu9Apgmgh8EINMcsJzYrIXMiQFHMGw2xD1HANCZdcItdBzVGf34V/zz/LJZM8Z5znczfO\nGXi+zrzzzHves9ChQ4coOzubnJ2dKTs7m4aHh4VtGhoayNzcnHp7e0WsdHkLZVGr1UKW+vp6qqio\nICIitVpNcXFx1NLSImbJC1ooR1ZWFhERPX36lPz8/Eij0RARUWZmJsXFxVFzc7OYJS9osfdjztyG\nxAAAB/RJREFUZGRE2Kazs5P27NlDXV1dREQ0PT0tVrmLWijH/fv3qaenh5KTk8nLy4tCQkIoKCiI\nHj16RBcvXpTkTHNkZISUSiVZWlpSdHS08It5enpa+L8bylhfKgvRbA6xxrrBNQEionPnztHjx4+J\niKi8vJyioqKopKSEZmZmhClhbGwsRUdHE9HslEuqFsvy65dLW1sbKZVK+vr1qxhlLuvXHBEREVRa\nWkpERIODg8J2nz9/ppCQkHmXCZGSpT5bcyIiIig1NVWsEv/IzznKysooKipKeD8+ffpEBQUFRET0\n/v17CgwMFK3OpUxMTFBaWhq9ePGCkpKSKDMzc97zU1NTRGQYY32xLAvtwlrrsW4QC8O5ubnQarXC\nReX279+P7u5uTE1NISAgAAqFAq9fv0ZnZydkMhmA2ctT5+TkwMrKCnV1dZK5LeWfZpm7uN6ciooK\nbNiwAVu2bBGj7N8sl8PV1RUajQYdHR2wtLQUXldWVgaZTGYwOX7+bAGAXq+Hk5OT5HYFLZXjyJEj\nUCgUqKysRGdnJw4ePAilUgkAePXqFTw9PSWzyJ2bmwuNRoPBwUFs2rQJ8fHxCAgIwN69e/Hx40e0\ntrYCmL8oL+WxvlyWhW77uNZjXbJrAkSEnp4eBAcHo66uDt3d3SgqKkJAQAB6e3vx5csX7Nq1CzY2\nNti5cyfy8vLg4eEBe3t7tLe3Iy4uDra2tsjPz0doaKjQHAwty8uXL3H69Gn09vbixo0b2LFjh0Hm\nqKysRGhoKPr7+3Hz5s15V5Q1pBxyuRwlJSUYGxuDv7+/aBn+JsfDhw+FHO/evcOZM2fQ3t6O5ORk\nWFtbSy6Hj48PLCwsIJfLYWZmhra2NrS0tMDX1xcymQwymQwdHR2IiYmBnZ2dpMf6clkmJiag0WgQ\nFhaGvr6+tR3razLfWCG9Xk9ERM3NzRQVFSX8LTExkc6ePUs/fvyg2NhYysnJoaGhISKanf5eunSJ\niGZ3P9TU1IhT/C/+Nsvly5eJiKiurm7eVVvFstr3pLW1lYqLi8Up/ierzUEkjXWAv82hUqmIiKi/\nv58qKytFqf1ni+U4f/48KZXKedsWFBRQYmIitbW10djYGE1NTdHQ0JDkx/pyWcbHx2lycpLq6+tF\nGeuSOnB7enoaKpUKMzMzOH78OEZHR4Vjy01MTJCeng57e3s0NjYiMjIShYWF6OrqQlJSEuRyuXDD\nGktLS3h6eooZZdVZ3N3dAQAuLi5wcXEx2Bxz74mzszOcnZ0NPgcAbNgg3l7U1eaYGxe2trbw8/OT\nbI7U1FRs374dWq0Wvr6+AAClUommpiYcO3YMOp0OlZWVOHDggOTH+p9mUSgU4hz9t+ZtZxEajYZc\nXV0pISGBsrKyyNvbm0pLS8nBwYHevn0rbHf79m06evQoEc3+Sj5x4gR5eHjQyZMnaXR0VKzy51kv\nWTgH5/gX/jRHRkYG+fr6Co+fPHlCZmZmFBcXR319fSJU/rv1kEUyTUCr1VJubq7wOCEhgTIyMkit\nVpObmxsRzR4N0NPTQ6dOnRJOcBkYGBAO15OK9ZKFc3COf2ElOcLCwoQcWq2WtFqtKDUvZj1kkczR\nQe7u7ggPDxeum+Ht7S0s+kxPTyMtLQ1yuRxdXV3YuHEjHB0dAQBWVlaiLpYuZL1k4Ryc419YSQ4T\nExMhh4+PD3x8fMQs/TfrIYtkmsDmzZthamoqnPFXXl4OGxsbAIBarUZTUxOCgoIQGRkJNzc3MUtd\n1nrJwjmkhXNIz7rIIvZU5Fd6vZ6mpqYoMDCQ2traiGj25ImBgQGqqqqizs5OkSv8c+slC+eQFs4h\nPYacRTIzgTkmJibQ6/WwsbFBfX09goKCcPXqVcjlcnh7e4t6fPlKrZcsnENaOIf0GHQWsbvQQqqr\nq0kmk5GXlxfdu3dP7HJWZb1k4RzSwjmkx1CzSPKMYZlMBmtra9y5c0c4Xt5QrZcsnENaOIf0GGoW\nvscwY4wZMcmtCTDGGFs73AQYY8yIcRNgjDEjxk2AMcaMGDcBxhgzYtwEGFuBK1euICUlZdHni4uL\n0dTUtIYVMbY63AQYW4Hl7lpVWFiIxsbGNaqGsdXj8wQYW8a1a9eQm5sLOzs7ODg44PDhw7CwsEBW\nVhYmJyfh5OSEBw8eoLa2FsHBwbCwsICFhQUKCgowMzODCxcu4Nu3bzAzM8Pdu3exb98+sSMx9n/i\nnrDMmLR9+PCBFAoFjY+P08jICDk5OVFKSgp9//5d2EalUlF6ejoREUVHR9OzZ8+E5/z9/YULitXU\n1JC/v//aBmBsGZK6vSRjUlNVVYXQ0FCYmprC1NQUISEhICI0NDRApVJheHgYOp0OgYGBwmvof5Nr\nnU6HN2/eIDw8XHhucnJyzTMwthRuAowtQSaTCV/qP4uJiUFxcTEUCgVycnKg0WjmvQYAZmZmYGlp\nidra2rUql7EV44Vhxpbg4+ODoqIiTExMYHR0FM+fPwcAjI6OYtu2bdDr9cjLyxO++M3NzTEyMgIA\n2Lp1KxwdHZGfnw9gdoZQX18vThDGFsELw4wt4/r168jJyYGdnR12794NNzc3mJmZ4datW7C1tYWn\npyd0Oh3UajWqq6sRHx8PU1NT5OfnQyaTITExET09PdDr9YiMjIRKpRI7EmMCbgKMMWbEeHcQY4wZ\nMW4CjDFmxLgJMMaYEeMmwBhjRoybAGOMGTFuAowxZsS4CTDGmBHjJsAYY0bsP+GNDGeBKakkAAAA\nAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x52f5e10>" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#at some point I'd like to get this working also\n", | |
"#dynammodel=sm.tsa.vector_ar.dynamic.DynamicVAR(actdf, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"6. ARMA " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"What does this tell me? (below)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"arma_mod12 = sm.tsa.ARMA(actdf,(12,0)).fit()\n", | |
"print arma_mod12.params" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"const 3342.634789\n", | |
"ar.L1.Units 0.688099\n", | |
"ar.L2.Units 0.099637\n", | |
"ar.L3.Units 0.160202\n", | |
"ar.L4.Units -0.292844\n", | |
"ar.L5.Units 0.046065\n", | |
"ar.L6.Units -0.216280\n", | |
"ar.L7.Units 0.143673\n", | |
"ar.L8.Units -0.014395\n", | |
"ar.L9.Units 0.335274\n", | |
"ar.L10.Units -0.176165\n", | |
"ar.L11.Units 0.013755\n", | |
"ar.L12.Units 0.178772\n", | |
"dtype: float64\n" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"I don't know how to interpet this below? The residuals?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"resid = arma_mod12.resid\n", | |
"stats.normaltest(resid)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 14, | |
"text": [ | |
"(12.796574667872109, 0.0016644054041814781)" | |
] | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"This looks like a great chart below but no idea of what it means.." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig = plt.figure(figsize=(12,8))\n", | |
"ax = fig.add_subplot(111)\n", | |
"fig = qqplot(resid, line='q', ax=ax, fit=True)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAHuCAYAAACPqIqHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4lOX5t/EzEEiiQBEUAcUtFgRBBfeqgLYsFrE/X7Ru\nCHVfE7QKAiEa2RRcIajVqhWqKOJeowguNHXBuuDCjlERQQQpsigJJOT940nITgaTzEyS83McHpk8\neWbmGqnw7c11X3dMfn5+PpIkSZJ2qUGkC5AkSZJqA4OzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmS\nFAKDsyRJkhSCiAfnvLw8unbtSv/+/SNdiiRJklShiAfnSZMm0alTJ2JiYiJdiiRJklShiAbn7777\njldffZXLLrsMz2GRJElSNItocL7hhhu48847adAg4gvfkiRJ0i7FRuqNX3nlFVq1akXXrl2ZO3du\nufcceuihZGVlhbcwSZIk1TuJiYl8+eWXu7wnJj9CPRIjR47kn//8J7GxsWRnZ7Np0yYGDBjAtGnT\nioqLibGFoxZLS0sjLS0t0mXoV/DXrnbz16/28teudvPXr3YLJXdGrEdi/PjxrFy5kq+//pqnn36a\n0047rURoliRJkqJJ1DQXO1VDkiRJ0SxiPc7F9ejRgx49ekS6DFWznj17RroE/Ur+2tVu/vrVXv7a\n1W7++tV9EetxDoU9zpIkSQqHqO5xliRJkmoTg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOz\nJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7Mk\nSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJ\nkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmS\nFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFAKDsyRJkhQCg7MkSZIU\nAoOzJEmSFAKDsyRJkhQCg7MkSZIUgthIFyBJkqTolZGRyeTJs8nJiSUuLpfk5N7069c90mVFhMFZ\nkiRJ5crIyGTIkNfJyhq381pWVgpAvQzPtmpIkiSpXJMnzy4RmgGyssaRnj4nQhVFlsFZkiRJ5crJ\nKb85ITu7YZgriQ4GZ0mSJJUrLi633Ovx8XlhriQ6GJwlSZJUruTk3iQmppS4lpg4kqSkXhGqKLJi\n8vPz8yNdREViYmKI4vIkSZLqvIyMTNLT55Cd3ZD4+DySknrVyY2BoeROg7MkSZLqvVByp60akiRJ\nUggMzpIkSVIIDM6SJElSCAzOkiRJUggMzpIkSVIIIhacs7OzOf744znqqKPo1KkTI0aMiFQpkiRJ\nUqUiOo7ul19+YY899iA3N5eTTz6Zu+66i5NPPrmoOMfRSZIkKQyifhzdHnvsAcC2bdvIy8ujRYsW\nkSxHkiRJqlBEg/OOHTs46qij2HfffTn11FPp1KlTJMuRJEmSKhQbyTdv0KABn376KRs3bqRPnz7M\nnTuXnj17lrgnLS1t5+OePXuW+bkkSZK0u+bOncvcuXN36zlRc+T2mDFjSEhI4Kabbtp5zR5nSZIk\nhUNU9zj/+OOP/PTTTwBs3bqVOXPm0LVr10iVI0mSJO1SxFo1vv/+ewYPHsyOHTvYsWMHF110Eb//\n/e8jVY4kSZK0S1HTqlEeWzUkSZIUDlHdqiFJkiTVJgZnSZIkKQQGZ0mSJCkEBmdJkiQpBAZnSZIk\nKQQGZ0mSJCkEBmdJkiQpBAZnSZIkKQQGZ0mSJCkEETtyW5IkSbsnIyOTyZNnk5MTS1xcLsnJvenX\nr3uky6o3DM6SJEm1QEZGJkOGvE5W1rid17KyUgAMz2Fiq4YkSVItMHny7BKhGSAraxzp6XMiVFH9\n44qzJElSDauOFoucnPJjW3Z2w+ooUSEwOEuSJNWg6mqxiIvLLfd6fHxe1QpUyGzVkCRJqkHV1WKR\nnNybxMSUEtcSE0eSlNSryjUqNK44S5Ik1aDqarEoXJ1OT08lO7sh8fF5JCX1dWNgGBmcJUmSalB1\ntlj069fdoBxBtmpIkiTVIFss6o6Y/Pz8/EgXUZGYmBiiuDxJkqSQZGRkkp4+p1iLRS9XjqNMKLnT\n4CxJkqR6L5TcaauGJEmSFAKDsyRJkhQCg7MkSZIUAoOzJEmSFALnOEuSJO2GjIxMJk+eTU5OLHFx\nuSQn93ZCRj1hcJYkSfVeqGE4IyOTIUNeL3GEdlZWMKPZ8Fz3GZwlSVK9tjthePLk2SXuC+4dR3p6\nqsG5HrDHWZIk1WsVh+E5Ze7NySl/zTE7u2GN1KboYnCWJEn12u6E4bi43HLvjY/Pq9aaFJ0MzpIk\nqV7bnTCcnNybxMSUEtcSE0eSlNSrRmpTdLHHWZIk1WvJyb3Jykop0a4RhOG+Ze4t7GNOT08lO7sh\n8fF5JCX1tb+5nojJr+xQ7ggK5cxwSZKkqsrIyCQ9fU6xMNzLMFzPhJI7Dc6SJEmq90LJnbZqSJKk\nOs0DS1RdDM6SJKnO8sASVSenakiSpDprd2Y0S5UxOEuSpDrLA0tUnQzOkiSpzvLAElUng7MkSaqz\nPLCkGuTnw6uvQmZmpCuJODcHSpKkOssDS6roo49g2DBYvRoeeCDS1UScc5wlSZJUUlYWpKQEq8xp\naXDJJRBbt9dbQ8mdtmpIkiQpsG4dDBkCxx0Hhx8Oy5fDFVfU+dAcKoOzJElSfffLLzB+PHTsCDt2\nwOLFkJoKe+4Z6cqiisFZkiSpvsrNhUcegfbt4dNP4f33IT0dWrWKdGVRyXV3SZKk+iY/H155BYYP\nh733hueeg+OPj3RVUc/gLEmSVJ988AEMHQrr18OECdCvH8TERLqqWsFWDUmSpPpg+XI45xwYMAAG\nD4bPPoMzzjA07waDsyRJUl22di1cdx2ceCJ07QrLlsGllzop41fw35gkSarVMjIymTx5Njk5scTF\n5ZKc3NsDTgC2bIF77oFJk+Cii2DJkqCfWb+awVmSJNVaGRmZDBnyOllZ43Zey8oKjtiut+E5Nxce\nfRRuuw169IAPP4RDDol0VXWCrRqSJKnWmjx5donQDJCVNY709DkRqiiC8vPhxRehc2eYMQNefhme\nesrQXI1ccZYkSbVWTk75USY7u2GYK4mw994LJmVs3gz33gt9+7rprwa44ixJkmqtuLjccq/Hx+eF\nuZIIWbIEzjoLzjsPLr8c5s+H0083NNcQg7MkSaq1kpN7k5iYUuJaYuJIkpJ6RaiiMFmzBq66Ck45\nJZiWsXQp/OUv0LCerbSHma0akiSp1ircAJienkp2dkPi4/NISupbdzcGbt4Md90FU6YEQXnJEmjZ\nMtJV1Rsx+fn5+ZF445UrVzJo0CDWrl1LTEwMV1xxBcnJySWLi4khQuVJkiRFj+3b4e9/hzFj4Pe/\nh7Fj4aCDIl1VnRJK7oxYcF6zZg1r1qzhqKOOYsuWLRx99NG8+OKLdOzYsag4g7MkSaIez2rOz4fn\nnoORI4OgPGFCcIiJql0ouTNirRqtW7emdevWADRp0oSOHTuyevXqEsFZkiSp3s5qzsyEYcMgOzto\nzejdO9IV1XtRsTnwm2++Yf78+Rx//PGRLkWSJEWZejeredEiOPNMGDQoOCr7k08MzVEi4psDt2zZ\nwtlnn82kSZNo0qRJmZ+npaXtfNyzZ0969uwZvuIkSVLE1ZtZzatXw623wksvwc03wzPPQHx8pKuq\ns+bOncvcuXN36zkRDc7bt29nwIABDBw4kP/7v/8r957iwVmSJNU/dX5W88aNMHEi/O1vcNllwWi5\nvfaKdFV1XukF2dtuu63S50SsVSM/P59LL72UTp06cf3110eqDEmSFOXq7Kzmbdtg8mRo3x5WrQoO\nL5kwwdAcxSI2VeOdd96he/fuHHHEEcQUnG5z++2307dv36LinKohSZIINgimp88pNqu5V+3dGLhj\nB8ycGUzKaN8+CMtHHBHpquq9qB5HFwqDsyRJqlPefjuYlJGfH7RnnHZapCtSgageRydJklRvfPEF\nDB8OixfDuHFw7rnQICqGm2k3GJwlSVLUqHMHnaxcCbfcAhkZkJICzz8PcXGRrkq/ksFZkiRFhTp1\n0MlPP8EddwTHZF95JSxfDr/5TaSrUhX5dwSSJCkq1ImDTnJy4N57g01/69bBZ5/B+PGG5jrCFWdJ\nkhQVavVBJzt2wFNPwahR0LkzvPVW8FV1isFZkiRFhVp70MkbbwSTMmJj4fHHoUePSFekGmKrhiRJ\nigq17qCTTz+FPn3gqqtgxAj44ANDcx3nHGdJkhQ1asVBJytWQGoqzJ4dtGZccQU0bhzpqlRFHoAi\nSZKiUq0cO7dhQ7DR77HH4JprYOhQaNYs0lWpmngAiiRJijq1buxcdjakpwcn/f2//wcLFkCbNpGu\nShFgj7MkSQqrWjN2Li8Ppk2DDh3g3XchMxMeesjQXI+54ixJksIq6sfO5efD66/DzTfDHnvAk0/C\nySdHuipFAYOzJEmqMeX1Mkf12LlPPglGy61cCbffDmedBTExka5KUcLgLEmSakRFvcwDB+5HVlZK\nievB2Lm+kSgz8PXXwYSMt96CW2+FSy+FRo0iV4+iklM1JElStSi9urxu3f+YP/+BMvf16ZNKUlKv\n6Bg7t349jB0b9DInJ8ONN0KTJuGvQxHnVA1JkhQW5a0ux8cPKvfe7OyG9OvXPbITNLZuhUmT4K67\n4M9/hoULoXXryNWjWsHgLEmSqqy8SRnZ2QeUe29Ee5kLJ2Xccgscfzy89x60bx+5elSrGJwlSVKV\nlT8pozfx8VeTnf3gzisR62XOz4dXX4Xhw6F5c3jmGTjxxPDXoVrN4CxJkqqs/EkZ3enYcRqtWqUW\n62XuG/4WjQ8/DCZlrFkDd9wBZ57ppAz9Km4OlCRJu630RsATT2zLE0+sKjMpY9KkCATlQllZMHIk\nvPMOpKXBxRdDrGuGKl8oudPgLEmSdkt5GwETE4Mxc/PmfR/5SRnr1sGYMTB9Olx/PdxwA+y5Z/jr\nUK3iVA1JklTtKjoye968VGbNGhOhqoCff4b77oN774ULLoDFi2GffSJXj+ocg7MkSapU8daMzz5b\nWe49ETsyOzcX/vGPoB3j5JNh3jw49NDI1KI6zeAsSZJ2qWxrxqhy7wv7mLn8fPjXv4JJGa1awQsv\nwHHHhbcG1SsGZ0mStEtlWzN6AylABI/MnjcPhg6FDRvgzjvhj390UoZqnMFZkiTtUtkZzcGGv732\nOp8jjugQ3jFzy5YFkzLmzYPRo2HwYGgYoRYR1TsGZ0mStEsVzWg+7rg5zJqVFp4ifvghCMozZsCN\nNwan/+2xR3jeWyrQINIFSJKk6Jac3JvExJQS14LWjF41/+ZbtsBtt0GnTtC4MSxZAiNGGJoVEa44\nS5KkXSpswUhPD+MJgNu3w6OPBqH51FOD0/8OOaTm3k8KgQegSJKk6JGfDy++GEzK2H9/mDgRjj46\n0lWpHvAAFEmSVHu8+y4MGxa0Z0yaBH36OClDUcXgLEmSyih+4ElcXC7Jyb1rrjVjyZJghfmTT4Kj\nsgcOdFKGopLBWZIklVD2wBPIygo2B1ZreP7+++C0v+efD1aan34a4uOr7/WlauZUDUmSVELZA08g\nK2sc6elzqucNNm+GW26Bzp2haVNYujQ4zMTQrChncJYkSSWUPfAkkJ1dxfaJbdtgyhT47W/hm2+C\n1oy77oIWLar2ulKY2KohSZJKKP/AE4iPz/t1L5ifD88+G5z4d8ghMGsWHHVUFSqUIsPgLEmSSkhO\n7k1WVkqJdo3gwJO+u/9imZlB/3JODjzwAPQKw6EpUg1xjrMkSSojIyOT9PQ5xQ486bV7GwMXLgwm\nZSxYAGPHwvnnQwM7RBW9nOMsSZJCUt74uVmzxuz+C61aBbfeCi+/HATnZ5+FuLjqL1iKAIOzJEn1\nXLWMn9u4ESZMgIcegssvh2XLoHnzmihXihj/zkSSpHquSuPntm0LTvlr3z6Yy/zpp3DHHYZm1Umu\nOEuSVA8Vb8347LOV5d6zy/FzO3bAM88EkzIOOwzmzIEjjqihaqXoYHCWJKmeKduaMarc+yocP/fW\nW8GkjJgYePRROPXUmilUijK2akiSVM+Ubc3oDaSUuCcYP1dqdNwXX8Af/xj0MA8dCh98YGhWveKK\nsyRJ9cCuWzOCDYB77XU+RxzRoWD8XN+ijYErV0JqKrz2GqSkwIsvQuPG4f0AUhQwOEuSVMeF1prR\nneOOm8OsWWlFl376CW6/HR55BK66KpiU8ZvfhKFiKToZnCVJqoOKrzAvWLCY9etnFPtpYWtGBScD\nZmfD/fcH4+XOPBM+/xz22y+c5UtRyeAsSVIdU3aFOa3UHRW0Zpx+MjzxBIwaFUzIePttOPzwcJYu\nRbVKg/OXX37J/vvvT3x8PG+//TZffPEFgwYNornzGSVJiiqFq8wffvglGzY8XewnueXcXao1Y84c\nOOYYaNQIpk2D7rtxvLZUT1Q6VWPAgAHExsby5ZdfcuWVV7Jy5UouuOCCcNQmSZJCVLjKPHv2WDZs\nOKzUT3cxNWP+fOjdG665JpjJPG+eoVmqQKUrzg0aNCA2Npbnn3+epKQkkpKS6Nq1azhqkyRJlSh/\nlbn0CnMQhFu2PI/OnQ8jPj6PYecexWlP/z1YaU5NhSuuCFabJVWo0hXnxo0bM336dKZNm8YZZ5wB\nwPbt22u8MEmStGsVrzKXt8I8i6lTr2Hu88nM6ryV0266Gg45BJYvh2uvNTRLIah0xfmxxx7joYce\nIiUlhYMPPpivv/6aiy66KBy1SZKkUiqellF8lbmw1SKVvfb6luOOO4AhV5zK6QvnwV8GwIABsGAB\ntGkT5uql2i0mPz8/v7KbfvnlF7799lsOO6x0z1TNiomJIYTyJEmqF8qflpFW8DgTeJ3SI+Ym3dOL\nfhu+Ddoxjj46mMsc5j/PpdoglNxZ6Yrzyy+/zNChQ8nJyeGbb75h/vz53Hrrrbz88svVVqgkSapc\n2aOyd7HKfGw7Rv+uOceNGgJNmsBTT8FJJ4WxWqnuqbTHOS0tjQ8++IC99toLgK5du/LVV19Vy5tf\ncskl7LvvvnTp0qVaXk+SpLosJ6f0elfpXubuJCbm8dKtJzMr932Om/4o3HYbvPuuoVmqBpWuODdq\n1KjMzOYGDSrN2yG5+OKLSUpKYtCgQdXyepIk1WVxcbuelnHgjh8Z32AJ+014HG65BS691E1/UjWq\nNAEffvjhPPnkk+Tm5rJ8+XKSkpL43e9+Vy1vfsopp+xcyZYkSbuWnNybxMSy0zKmT76AuUf9xNSF\nT7Hfad1h2TK46ipDs1TNKl1xTk9PZ9y4ccTFxXH++efTp08fUlNTw1GbJEmi5CSNZs1+oFu3a2na\ndB9+0yibCW3/x2HJl8C558KiRbDvvpEuV6qzKg3Oe+65J+PHj2f8+PHhqKeMtLS0nY979uxJz549\nI1KHJEk1pTAYr1q1jjVrfqJNmzY0arQFaMy2bXl89VUMW7f+bef9vz1kBI+dvJUjn3sSmp8I778P\nv/1t5D6AVAvNnTuXuXPn7tZzKhxH179//4qfFBNTbVM1vvnmG/r3788XX3xR7vs4jk6SVBcVD8tB\nML6AonFyxUfLjQLGFjwrn35kcAfDyd9rE11efQZOOCEyH0CqY6o0ju7GG2+s9oIkSarPyoblv1EU\njEdRNIN5drHHwR/Vx/Jf7mQo+7CO4dzBpi4fM9fQLIVVhcE5HC0R559/Pv/+979Zv3497dq1Y/To\n0Vx88cU1/r6SJIXLrsMyFP1RXPyP5KLHiaxlPH/mJN7lVm7jcf5CHrH0SfgwPB9A0k4VBudzzjmH\nmTNn0rlzZ2JiYkr8LCYmhs8//7zKb/7UU09V+TUkSYpWJU/6Ky8sQ9EhJrklru3DWlIZw/lM516O\n4mKW8Qt7AsGJgElJfWu8fkklVRicJ02aBEBGRkaZfo/SQVqSJJWcfrFp03d8+eX/2Lz5+YKflheW\noegQkz5ACnswkhtYww0cxJNcRkeW8yOLSUi4hM6Jbdhvv6YkJfWlX7/uSAqvCoNz27ZtAXjggQeY\nMGFCiZ/dfPPNZa5JklRfZWRkkpo6jcWLG5Gd/SBFm/v2L3ZXeWF5HIWHmDSJT+e6Pb4lecO9fNqs\nHRfvdwar4vM4vOn9xMfnkZR0rWFZirAKp2oU6tq1K/Pnzy9xrUuXLuVOwahuTtWQJEWrsr3Le1PU\nilF8w1/hteKTMoLvExLuJ/GQ1gxo/D03rfuAJoceAhMnwrHHhvWzSKriVI0HH3yQBx54gKysLLp0\n6bLz+ubNmznJ8+4lSfVY+b3LacXuKPzjtezKckLCuSQWtFyk/qEHJ704HTZuhIcehNNPB9shpahV\nYXC+4IILOP300xk+fDgTJkzYmcCbNm1Ky5Ytw1agJEnRJCMjk8GD72f9+hkFVwr/KC25uS9Q2FqR\nCjSkZcslTJ16Lf0O3RdGjoRJj8Po0TBoEDRsGIbqJVVFpa0aAHl5efzwww/k5hb9pnDAAQfUaGFg\nq4YkKTqUbctoTdEKc+GKc/FWjNJtGcEkjL+lHcsf3p0NM2fCTTfBkCGQkBDWzyKpfFVq1SiUnp7O\nbbfdRqtWrWhY7P8Nh6PHWZKkSCu/LWNUsTuKt2MApBIfv4K2bbfRvPm1NG26D81jtzKx1VraD7kM\nBg+GpUvBv72Vap1Kg/N9993H0qVLbc+QJNVLkyfPLgjNEGrvclLSZcEEjO3b4ZFHgnaMfU+Djz6C\ngw8O/4eQVC0qDc4HHHAAzZo1C0ctkiRFnZyc8uYvV9C7XDguLj8fnn8eRoyAdu0gIwO6dQtf0ZJq\nRKXB+eCDD+bUU0+lX79+NG7cGAh6QP7617/WeHGSJEVaXNyu5i93JzFxJJMmXVMUmt95B4YNg19+\ngcmToXdvJ2VIdURIK84HHHAA27ZtY9u2beTn53tyoCSp3khO7k1WVkpBu0Z5bRkFp/gtXgzDh8On\nn8LYsXDhhdCgQWSLl1StQpqqESlO1ZAkRVLxaRpr1vxEmzaFYblX0Qrz6tWQlgYvvAA33wzXXQfx\n8RGtW9Luq5apGmvXrmXixIksWrSIrVu37nzht956q3qqlCQpCpWcphFo3jylKDRv2gR33gkPPACX\nXBJMymjRIoIVS6pplf4d0oUXXshhhx3GV199RVpaGgcddBDHHHNMOGqTJCliSk7TCGRljePBSbMg\nPR3at4dvv4VPPgkCtKFZqvMqXXFev349l112GZMnT6ZHjx706NHD4CxJqvNKTtMAyOccZnLvf/4G\nDY6D11+HI4+MSG2SIqPS4Fw4SaN169a88sortG3blg0bNtR4YZIkRVLxaRo9mMtEhhFLLlM6n87t\ns56MYGWSIqXS4JySksJPP/3E3XffTVJSEps2beLee+8NR22SJEVERkYm69atoVvjc7lt288czkJS\nGMeHh3zBfWmnR7o8SRHiVA1JkgpkZGSSmjqNTYtyGJHTmP48z+0cy2Nx+3Do4c0ZPfrcomkakuqU\napmqcfHFF5d5UYDHHnusCqVJkhRZpUfNNWkSS/YPjRmSvYwrWMLDXEF7vmYjzSEH9tkn1dAs1XOV\nBud+/frtDMtbt27lhRdeoG3btjVemCRJNaFwVXnx4kZkZ58PvE5jJjNwfX9G8BkZtOUoPuU72pV4\nXnZ2w8gULClqVBqczz777BLfX3DBBZx00kk1VpAkSTWlaDZza2AsMaRwHoczlo4sJpY/8AYLmAGl\nQjNAfHxe2OuVFF0qDc6lLVu2jHXr1tVELZIk1ZiMjEwGD76f9etnAGmcxptM5B/ksT+X8Bj/5g2g\nC7ABSAGKZjgnJo4kKalvZAqXFDUqDc5NmjTZ2aoRExPDvvvuy4QJE2q8MEmSqkPJ1oyOdOFzJvBP\n2vNPRnACM3kOiCE4E6x4YE4lPn4FnTo1dVOgJMCpGpKkOqyoNSOGdlzBGM6gLz8wlvN4iAS280fg\ndYrCciYJCfeTmNiG/fZrWnS8tqQ6L5TcucvgnJOTw/Tp01m4cCG5ubl06dKFP//5zzRt2rTaiy23\nOIOzJOlXKmzNyFv/N0ZwBpeyhAfpx0RasZm7gExgDo0afUZ8fCMOPLCdYVmqx6oUnBctWsSZZ57J\n7373O4455hjy8/P5+OOPee+993jllVd47bXXuOGGG2qk8J3FGZwlSb9CRkYmQ5MyOP3r+QxnPi+w\nP2lk8D1tKQzM0JCWLZcwdeo1BmVJVQvOp512GiNGjKBXr14lrr/xxhsMGjSILl268Prrr1dfteUV\nZ3CWJIWocC7z6u/WcvSSD0nbsYHPaMwIXmQxP1KyJSPY8DdpUl9DsySgisG5Q4cOLF26tNwnHXzw\nwSxYsIA999yz6lXuqjiDsyRpF4ofYvLVVzGcvPW3TOBOcohlKE/xDvkUBeZgpdkNf5LKU6WTA/Pz\n88nOziY+Pr7E9ezsbBo1alTjoVmSpIqUnJTxIEdxGS+xggOZyQge5nk+AU4p9oxUgtaM5bZmSPrV\nGlT0g0GDBnH22WfzzTff7Lz29ddfc84553DRRReFozZJkkrIyMikW7fLOPvsp5g/vzX7Zt/MPxnI\nq8zgBc7icK7heQYAfQhGywF0B8aQmLjN0CypSnY5VWPKlClMnDiRn3/+GYA999yToUOHkpSUFJ7i\nbNWQJBVIS3uAiRM/Z+vWvWnBDYzkDP7CMtJJ4m5+Zgt3AqOAsQXPcBOgpNBVeRxdoU2bNgHQrFmz\n6qksRAZnSap/ivctr1nzE02axLJ+/Qa2bIkjnukk05+b+IxnOYDbyOAHWhOE5NcJVprdBChp91Vb\ncI4Ug7Mk1S9FB5YUBuDgawPyuYhFjOFjPmRPRvASy/iB8g4vadUqli1b8mjTprVzmSWFrEqbAyVJ\nCqfCA0vWr59B0HIxDkihLyczgb+wicacywzeJxeYRvlHY19rSJZUYwzOkqSIKN6SsWLFSnJy9mf7\n9o4FP43w9EZNAAAgAElEQVTlaD5iItNpy3MMpzsvcR2QQfHAHBPzJV27tmD06MsMzJJqXKWtGj//\n/DP33HMP3377LX//+99Zvnw5S5cu5Ywzzqj54mzVkKQ6qWxLRgzBpr5RHMwljKM/PdjAbRzFo7xM\nHu9R1LoRbPhLSFjMsGE9SEu7JnIfRFKdEUrurHAcXaGLL76Yxo0b89577wHQtm1bUlJSKnmWJEkV\nmzx5NllZ44DZBCvIsezNOu5jCR/SmUWcwG+5kIcZTh63EoyUC0JzfPwKunVbx8yZ1xqaJYVVpa0a\nWVlZPPPMMzz99NMAHnwiSaqynJzCP35iSeAXruff/JUpPM15dOQp1vERsJbY2DvZb79mbNlyXrHN\nfrZlSIqMSoNzXFwcW7du3fl9VlYWcXFxNVqUJKnuysjIZMGCxTQkl8F8xG205z1+y4mcw5dMKbjr\nTwVj5C40JEuKGpUG57S0NPr27ct3333HBRdcwLvvvsvjjz8ehtIkSXVNRkYmQ5JnceL6o7iDNvzI\nfgzgD/yXxwlmMRefkHGuoVlSVAlpjvOPP/7IvHnzADjhhBPYe++9a7wwcHOgJNUlGRmZTLpgNKM2\nbaMl6xnOQF7hZ2AdsbGrOeywROcuS4qYKh2A8vHHHxMTE7Pz+8LbCq9169atuuqsuDiDsyTVCW8/\nPJ3sv46hy8+ruJV7mcpg8or9pWePHmnMnZsWuQIl1XtVOgDlxhtvLBGcS3v77bd/fWWSpPph7VoY\nPZqj/vYod+alMoCNbOXSMrfFx+dFoDhJ2j0euS1Jqn5btsA997Dtrrt5Nn5/rl/XgXU8T9DHXPyY\nbAo2Afa1PUNSRFXLkdtbt27lgQce4J133iEmJoZTTjmFq6++mvj4+GorVJJUuxWeArjmux/4w4r5\nDMteRGZMc0ZxOss2H1rszsJwnAo0pGXLJUyadI2hWVKtUOmK8znnnEOzZs0YOHAg+fn5TJ8+nY0b\nNzJz5syaL84VZ0mKeoWTMjp/tSd3cA+rOZBhHMXHtCU4DTANOI3SK83x8Vfx7LMXGJolRYVqWXFe\nuHAhixYt2vn9aaedRqdOnapenSSp1svIyGTKBbcxdVM2TfmSG3iCWbxDEJDTCu7KpfRKM+TRsWOu\noVlSrVLpkdvdunXj/fff3/n9vHnzOProo2u0KElS9Eu/7lZyzxzMQ5s+4u9cTleuZBanA40K7sgt\n+NobSCEIz2OANBIT8xgzZlAEqpakX6/SFeePPvqIk046iXbt2hETE8O3335Lhw4d6NKlCzExMXz+\n+efhqFOSFCGF/curVq1jzZqfODhhO1et+Yjzcn/gTsZwHuvJ5i/AqIJnlA7Mhe0ZHm4iqXartMf5\nm2++2eULHHTQQdVYTkn2OEtSZGVkZDJkyOtkZfWhCS9zEz9yHc/wOEcwnu78j4kUTcroU+rruIKf\nzTEwS4p6VToApbgNGzawcuVKcnNzd17zABRJqrsKV5nffXchOT8/w+X0J5XPeJO9GcW/WMHjBCvL\nYwueEQRkWEts7Gr2268ZW7bk0aZNa08DlFQrVMvmwNTUVB5//HEOOeQQGjQoaon2ABRJqjuKt2Os\nWLGSnJz92b79QgbwH8ZzON+Qxx95lU95CTiIIDQXb8XoDnQnIeFKZs4cakiWVCdVGpxnzJhBVlYW\njRs3Dkc9kqQwKQzLS5Ys5bvvmrFjx2CCFot9OJk+TOR8EtjOdfyTOWQCXYHnCp7dm6K2jGBSRkLC\nYoYN62FollRnVRqcDz/8cDZs2MC+++4bjnokSTWk/FXlgcBy4FFgFB25kDs4iyP5Jykcx3SSyWcO\nQUBOKfa1cMNf8f7law3Nkuq0SnucP/zwQ/70pz/RuXNn4uLigifFxPDyyy9X+c1nzZrF9ddfT15e\nHpdddhk333xzyeLscZakalF8k1+wUhxD0J88CoilDVdwG2fwJ75jAkdwP6+Qw9iCe4r6l2EjcXGb\nadKkqf3LkuqUatkc2LFjR66++mo6d+68s8c5JiaGHj16VKm4vLw8OnTowBtvvMF+++3Hsccey1NP\nPUXHjh136wNIkirXp88oZs8uDMqFp/ml0ZQRDOM/XM1iHqU9t/MqP/EFZadjBBITRzJpUl+DsqQ6\np1o2BzZp0oTk5ORqK6rQf//7Xw499NCd4+zOO+88XnrppRLBWZJUPXJyCn+7D742IoermEwK6bzG\nKXTlfFbyZ+AuirdhNGr0BfHxAzjwwHYFq8uGZkn1V6XB+ZRTTmHEiBGceeaZO1s1oOrj6FatWkW7\ndu12fr///vvzwQcfVOk1JUnli4srHCe6nT8zg/FMYxnx9CKdL/iSYHV5DvAjDRr0p1271hx2WGuS\nkm4yKEtSgUqD8yeffEJMTAzz5s0rcb2q4+hiYmJCui8tLW3n4549e9KzZ88qva8k1UfJyb3ZZ8GF\nDFn9MQ14jCt4grdoRNGq8pKCVeVWJCVdaFiWVOfNnTuXuXPn7tZzQjoApSbMmzePtLQ0Zs2aBcDt\nt99OgwYNSmwQtMdZkqrBF1/A8OH88vF8Ju97PE/m7sP3P2xyc58kFVNtJwe+8sorLFq0iOzs7J3X\nbrnllioVl5ubS4cOHXjzzTdp27Ytxx13nJsDJamKio+ci1m1mtTtizj1l1U80PxwHoo5mJZt96dt\n2yYkJ/c2LEtSMdWyOfDKK69k69atvPXWW1x++eXMnDmT448/vsrFxcbGMmXKFPr06UNeXh6XXnqp\nGwMlqQoKR879mPU7hjOOy1nIQ3TmctLZtOFdYBzf/w8WLICsrBQAw7Mk7YZKV5y7dOnCF198wRFH\nHMHnn3/Oli1b6Nu3L++8807NF+eKsyRVqnCV+cN3PmfwL6cyglH8i/O4lT1ZxWSKRtCV1KdPKrNm\njQl7vZIUjaplxTkhIQGAPfbYg1WrVtGyZUvWrFlTPRVKkn61jIxMUlOnsWRRLGfl7MPHvMVCdnAa\ng1nIAwSzmqGi3+qzsxuGq1RJqhMqDc79+/dnw4YNDB06lG7duhETE8Pll18ejtokSRUobMs4KGsr\n77CYXNbwF84ik38SrDAD5Jb6WlJ8fF44SpWkOmO3pmrk5OSQnZ3Nb37zm5qsaSdbNSSpfFf/7nL+\n9P5KDuW/jOAhnmUB8HtKnvhX+qsnAEpSRao0VeO///0v7dq1o02bNgBMnTqV5557joMOOoi0tDRa\ntGhR/RWXLs7gLEklvPWPZ9iRMpYu3y9nDHfyMKvYzu0U9TFnEhxkshbYSFzcZpo0aUqTJg3ZsiXP\nEXSSVIEqBeeuXbvy5ptv0qJFCzIzMzn33HOZMmUK8+fPZ8mSJTz77LM1UnSJ4gzOkhTYsIGsy66h\nxYsvMWXHOdzJZjbzPEFQdlVZkqqqSpsDd+zYsXNVecaMGVx55ZUMGDCAAQMGcOSRR1ZvpZKk8mVn\nw5QpMGECS+LbcdmOLNZwP9AbSKEoKM8BPqVp0wEFJwA2JSnJ0CxJ1anC4JyXl8f27dtp1KgRb7zx\nBg8//PDOn+Xmlr/RRJJUTfLy4MknITUVunbl32PuZuCIN/mJNgS/dRcG4lQgmI5x+OH7s2DBQxEq\nWJLqvgqD8/nnn0+PHj3Ye++92WOPPTjllFMAWL58Oc2bNw9bgZJUr+Tnw+zZcPPNkJAATz5JxsYd\nDBnyOj/91K7gpsLFi+4UBWjYf//UcFcrSfXKLqdqvP/++6xZs4bevXuz5557ArBs2TK2bNlCt27d\nar44e5wl1SeffALDhsHKlXD77XDWWRATQ58+o5g9u3Djn/3MklQTqrQ5MBoYnCXVC19/DaNGwVtv\nwS23wGWXQaNGQDCveeDAR/npp6kFNxdNzYiNXc1hhyU6JUOSqkG1nBwoSaoh69fDuHEwdSokJ8ND\nD0GTJjt/XHjISVGLBhRvz/j97z0yW5LCqUGkC5CkemfrVrjjDujQIZiasXAh3HpridAMMHnybLKy\nxlE0QaNIYuJIkpJ6ha9mSZIrzpIUNnl5MG1a0I5x3HHw7rtBeK7A6tVbCh6VnKCx115LmTTpalsz\nJCnMDM6SVNPy8+G114JJGc2bwzPPwIkn7vIpGRmZZGV9X+xKUYvGccelGpolKQIMzpJUkz78MJiU\nsWZN0J5x5pkQE7PzxxkZmaSmTuObb7aQk7OVhg0b0qJFAqtWbSI3dyglDzmBhIQrSUq6MPyfQ5Jk\ncJakGpGVBSNHwjvvBP3Ll1wCsbFkZGQyefJsVq1ax4oVK9m6dU/y8toDgygcNbd58+tAI8oecpLH\nIYfgarMkRYjBWZKq07p1fH3pVbSY9RpT9zqcu3JPoMH4f7P+xhfJzd1BTs7+5OcXhuR9Cp40FhhF\nsLJc/Ct4yIkkRQ+nakhSdfj5Zxg3jm2H/pb//HsFv93+FEPW9mbl/4awYkU8W7Z0JTv7GPLzHwFm\nE4TjWIrWL0p/dZKGJEUbg7MkVUVuLjzyCLRvD599xpVHXMDgTR+xjg8JwvFsoA1FQZliX3MpOj67\n9NfuBCcEpgJptGx5nicDSlKEGZwl6dfIz4eXX4YjjoAnnoAXXiBj8HW8uODnghuKh+TiQbn4197A\n9wQry71LfYUgPI8hMXEbU6deY2iWpAizx1mSdte8eTB0KGzYAHfeSUZ+E1KvepjFixuRnV14yl/p\nkAxFobgPJadlTCMm5m4aN86jceMltGgRz5Yt59GmTeuC47RdaZakaBCTX9mh3BEUypnhkhQ2y5bx\n/cVXEPvxJ0xu2ZWHsltBw62sX78vO3a0Idjkl0nhdIyir1OB1gRBOROYQ8OGn7LHHo058MB2BeG4\nl+FYkiIolNxpcJakchQfG5e3eg0jti+m35ZvuLfBUdyzYyxb+TdBKL4fmAGkFfwDheEY1hIbu5r9\n9mvG+vU/AQk0arQnBx/chNGjzzUoS1IUCSV32qohSaVkZGQyZMjrrMk6hRsZTzKfMY0OdOA61u+4\nh5Ij4zoWPKt4S0bRCLnf/z6VWbPGhLN8SVINcXOgJJVy/32v8YesdizjHDqwP8cykL/yX9bTrOCO\n4hv/im/0c3ycJNVlrjhLUqH8fHjxRf727t9ZzpH053w+4WGKWjDKGx1XGJgLN/qlEhPzJV27trAd\nQ5LqGIOzJAG8+y4MGwZbtjCx7Qncn/UvghnKUHZVuU+xr4UbAINjsRMSljFsWA/S0q4J8weQJNU0\nNwdKqrcyMjJ54fbpnP/563T4eS337nUEj2Q35+fsJuTltadkMH6d4lMxGjX6jPj4RgWj4/KKjY5z\nOoYk1UZO1ZCkCrzxzxdYd91o/rDpayZyNFMYTjZzgRiKxsoFkzFgI3Fxm2nSpKkBWZLqKKdqSFJp\nmzez/Irr6DbjaR7LT6ID+WzgboomZaQV3Fg0GQPghBPSmDs3rfSrSZLqEadqSKoftm+H++8n+4CD\nWPjKJ3TLv5qh3MUGmhbcUPpY7JLi4/PCUqYkKXoZnCXVWRkZmfTpncJf2/Xiq/gWZN40lpM3H85Z\nW75gBU0K7io9KcOxcpKk8tnjLKnOKH7a34oVKzl2a0PG531FHOsZxlDe4H9AI4J2jPKOxi65ATA+\nfgWdOjV1rJwk1QP2OEuqNwpP+8vK6kMnnmA6y+nCdlI4iqf4gnxuoei0PyjqX54D/Ehs7J3st18z\ntmw5r9gGwMsMzJKknQzOkuqEyZNnszXrGv5OP85kNXfQlXN4iRzuIOhKK/ztrviBJcEGwMTEkUya\ndKEhWZK0SwZnSbXfxo1ctPjfnM6D/J2OtGcZG7kLiKdsD3NhOA4OLGnZcgmTJl1jaJYkVcrNgZJq\nrVdffJMHD+vN+pZtyPvuG47iU0bQk400p2hlufRXCMLzGBITtzF1qqFZkhQaNwdKqjUKN/+t/m4t\nR2f9l9Scr1hKJ4bThS+4CE/5kyT9Wm4OlFQnZGRkkpo6jcWLG3Fidgf+waMAXM6LvM1bBCf9FSrc\n7Nefww5LLAjINxmQJUlVZnCWFFWKj5Rbs+YnmjSJZe3apiRubcBzrKADT5PCgzzDYvI5jWBVuVDR\naX8nneRJf5Kk6mWPs6SoUThSbvbs3ixcuDfr188gb0VL7t+awxtMZxZ96ch1zOA88ik8yc+T/iRJ\n4WFwlhQ1Jk+eTVbWOGA2v2Eod3Azn/IIq2lLe64inWS2U9h/Vt6mv4An/UmSaoKbAyVFVPHWjKVL\n/0eD3Ce4ljMZznxe5kxuZQ9WM5myJ/2V3fx34IHt3PQnSfpV3BwoKSoVD8tffRXD1q0XEMMsLmAN\nY+nA5zTmVN5mEYcThOPCA0sgCMpfEB8/oFhQdvOfJKnmueIsKayKjsYuPP56LH/gAiawhO1kM5Sj\n+Q+XU7SqDJBJQsL9JCa2cUVZklQjQsmdBmdJYZORkcngwfezfv0MAI7kKibwNYfwESP5G89yNvAf\ngpFya4mNXV1spJxhWZJUcwzOkqJC8TnM2dn7cgAXM5ZR9OIFxjCBh/mOXG4v87w+fVKZNWtMBCqW\nJNU39jhLipiyfcyt2Yu/MoY/cjHp3M+1tGcmm3kHOJ2SfcyFkzH6Rqp8SZLKMDhLqlYlV5cfBEYR\nxyhuoj/D6MBz/I7OHM8aRhc8Y08SEu6nVatYtmw5r9hx2H1tzZAkRRWDs6QqK291GcbSgDwGsoAx\ntOdjEjiF/7CUwwgmZaQCDWnZcglTp15rSJYkRT17nCX9auWtLsNY4Fb6cCITGcYW/sdQZvAeeZSc\nlBG0Y0ya5MqyJCny7HGWVO0qWl0OxNKNj5nINPbnaYZzBy/SAniVosCcSnz8Cjp1asro0ecamiVJ\ntYbBWVLIypvBDGkAHMTXjONZevIwozmfR2lELmcVPDOGhIRzi81hvszALEmqdQzOkkJSegZz4W8f\nLdlECjcwiGlM5k9cQUt+5k4K+5iLVpftY5Yk1W4GZ0k72y9ycmLZtOk7oDHNmrXa+XjbtryCtoyO\nO5+TwFaGcDs38hgzSKQTi1jLvgSn/Lm6LEmqeyISnGfOnElaWhpLlizhww8/pFu3bpEoQ6rXyvYq\n/41glbhwA1/xx4VtGaNoQB6Dmcpo/sE8WvA7/sty1gBTXF2WJNVpEQnOXbp04YUXXuDKK6+MxNtL\n9V75vcoAsynaxFf8cSyQzx9pygRa8z86cjYv8wHbSEhIpbOry5KkeiAiwfmwww6LxNtKKjB58uyC\n0Awlfxso//GxrGAip9KKtQznr/yLn4FZzmCWJNUr9jhLdVx5/ctfffVLsTtyK3ycyJeMZyQn8Ta3\nchyP8zl5Bb9tBDOYrzE0S5LqjRoLzr169WLNmjVlro8fP57+/fuH/DppaWk7H/fs2ZOePXtWQ3VS\n3VNeQC7a1Fe6f3lUsWf2BlIKrgeP92EIqSzifI7gXlK4mH/wCx+TkHBhsU1/HlwiSaq95s6dy9y5\nc3frORE9OfDUU0/l7rvvrnBzoCcHSqEp2bNc3qY+Sj0ufk/wfULC/XQ+eG8Gb5jHhWsX8WbrI7h/\nr0PZ2Lg5TZvuQ3x8HklJvQzLkqQ6qVacHGgwln6d4ivMCxYsLjZfufSmPsp5XBh+U/nNb1byu+P2\n444O7Tji+aeg+ykw7hkGJCYyoKY/hCRJtUhEgvMLL7xAcnIyP/74I/369aNr16689tprkShFqpVK\nrjBD4el9geL/WVfUvwxBeD6F6w85l7SVz8P21vDii3DssTVQsSRJtV9EWzUqY6uGVL4+fUYxe/bY\nYldCacko2Z5xAu+THv9n2u/biGYPTIHTT4eYmLDUL0lStKkVrRqSdl9OTun/dMtu8AseBy0ZhSf5\nNWq0hQNzLuT6tfPptOU7Vl95Dc3uHgcNG4azfEmSaiWDs1QLxcWV13YBLVueR+fOh7Fp0w/ExFxb\nbFPftfQ7pgPcdhs88yLcdBMMGcI+CQnhL16SpFrK4CzVQsnJvcnKSinW4wyJibPKn6u8ZQvcdRcM\nOgsGD4alS6FlyzBXLElS7WdwlmqhwnCcnp5KdnbDglXlUnOVt2+HRx6B0aPhtNPgo4/g4IMjVLEk\nSbWfwVmKoOIj5eLicjnxxLa8//7qkL9PTu5ddoU5Px9eeAFGjIB27eCVV+DooyPzASVJqkOcqiFF\nSNmRcpnExk4nN/dvIX4PiYkpTJrUpyg8v/MODBsGv/wCEyZA795OypAkKQSh5M4GYapFUimTJ88u\n0aMMs0uE4sq/h6yscaSnz4HFi+H//g8uvBCuvho++QT69DE0S5JUjQzOUoSUHSm3u99DG1Zz7eev\nQvfucPLJwca/iy6CBv6nLUlSdbPHWYqQsiPlQv++KZsYyp1cwwO8HdceFiyFFi1qokxJklTAZSkp\njDIyMunTZxQ9e6axbt0aWrf+a7Gf9iY29qpdfp/Q8HKuI51ltOdAVnDWAeeRMGWCoVmSpDBwc6AU\nJmU3A0Lr1pfStm38zoNKTjihDfPmfb9zxNzO77c2oNfGBVz9bSZfNWjGgwf1YtXe+5CU1KvsVA1J\nkrTbQsmdBmephpQeNbdu3f+YP/+BMvf16ZPKrFljKn6hf/87mJSxfTtMnAh/+EMNVi1JUv0USu60\nx1mqAeWtLsfHDyr33uzshuW/yIIFMHw4LFwI48bBeee56U+SpAgyOEu7qfRKcnJyb4Ayq8tZWSVX\nl7OzDyj39eLj80pe+O47uPVW+Ne/gkNMnnsO4uJq5LNIkqTQGZyl3VDeSvLnn18K/IY1a+7Zea38\n1eXexMdfTXb2gzuvJCaOJCmpb/DNxo1wxx3w8MNwxRWwbBk0b15Dn0SSJO0ug7O0G8oeWgJr1rQB\nxpa4Vv7qcnc6dpxGq1apOzf/JSX1pd8fjof77oPbb4d+/eDTT4OjsiVJUlQxOEu7oeyhJVD+f0bl\nry6PGTOoaArGjh0wYwZ07Bj888Yb0KVLjdQtSZKqzuAs7ULpfuZNm/5Xzl2lDyqBCleXC0Pzm2/C\nzTcHR2I/9hj07FmDn0KSJFUHx9GpXilvY1+/ft0r3PBX3tzl0v3MrVtfAjQvcS0xcSSTJvUtO2P5\n88+DwLxsGYwfD+ec46QMSZKigHOcVe9UFIwLf1Y6CCcmpjBw4H488cSqMtebNdtQ7tzlrl0vo1Wr\nNsVWknsBkJ4+p8S1EqH522/hllvgtddg1Ci48kpo3LiG/i1IkqTd5Rxn1SvlBeOsrBQA+vXrXu7G\nvqyscUyZci7r188oc32vvQaX+z7Nmu3PrFlpZa6Xe4Lfhg3Bpr9HH4Wrr4bly6FZs938ZJIkKRr4\nd8SqMyoKxunpc4CKNvZBbm5CBa+YU+7VMnOXy5OdDXffDe3bB+H5889h7FhDsyRJtZgrzqpVdtWK\nUVEwLjyZLy6uvE18EBu7tdzrBx3UhBYtUkq1cBSbu1yeHTtg+vSgHePII4Pjsjt1CuWjSZKkKGdw\nVq1RWStGRcG4cIU4Obk3WVllg/DAgT144omy18eMCQ4xSU+vYDJGabNnBxv/4uLgn/+EU06p0ueV\nJEnRxc2BqjX69BnF7Nljy7meyqxZYyrY/FdyukVGRma5m/gquh6S+fNh2DBYsSKYlDFgQDBmTpIk\n1RpuDlSdUlkrRmHQ3dUKcb9+3csNxBVd36VvvglaMt58E1JT4fLLoVGj3XsNSZJUaxicFTV21b8M\nFfcoF9+s96sC8O5avz5YWX78cbjuOnjwQWjatGbfU5IkRZzBWVGhsv5lqLhHeZeb9arT1q2Qng53\n3glnnw0LF0Lr1uF5b0mSFHH2OCsqVNa/XKhKvci/Vl5esNnvllvgmGOCucwdOtTse0qSpLCyx1m1\nRmX9y4XC0opRKD8fZs0KJmU0bQpPPQUnnRSe95YkSVHH4KyoEEr/clh99FEwKWP1arjjDvjTn5yU\nIUlSPefJgYoKycm9SUxMKXEt6F/uFd5CvvoKzj8fzjwTzj0XFiyA//s/Q7MkSbLHWdEjIv3LhX78\nEcaMgSeegOuvhxtugCZNwvPekiQp4kLJnQZn1ajKRsxF3C+/wH33wT33wHnnBRsAW7WKdFWSJCnM\n3ByoiAplxFzE5ObC1Klw661w4onw/vvw299GtiZJkhTV7HFWjZk8eXaJ0AyQlTWO9PQ5EaqIYFLG\nK6/AkUfCtGnw3HMwc6ahWZIkVcoVZ9WYUEfMhc0HHwSTMn78MZiUccYZbvqTJEkhc8VZNSZqRswt\nXw7nnAMDBsCgQfDZZ9C/v6FZkiTtFoOzakzER8ytXQvXXRf0MHftCsuWwaWXQqx/0SJJknafCUI1\npnADYHp6arERc31rfmPgzz8HUzLuuw8GDoTFi2GffWr2PSVJUp3nODrVHbm58OijcNtt0KMHjB0L\niYmRrkqSJNUCjqNTtYramcz5+fDSSzBiBLRpAy+/DMccE+mqJElSHWNwVkiidibze+/B0KGwaVPQ\nntG3r5v+JElSjXBzoEISdTOZly6F//f/gtP+Lr8cPv0UTj/d0CxJkmqMwVkhiZqZzGvWwNVXw0kn\nwfHHBwH6L3+BhhGaDS1JkuoNg7NCEvGZzJs3B8djH3447LFHEJhvvhkSEsLz/pIkqd4zOCskEZvJ\nvH07PPAAtG8PWVnw8cdw993QsmXNvq8kSVIpbg6sB6pjGkbYZzLn58Nzz8HIkXDggZCRAd261cx7\nSZIkhcA5znVcedMwEhNTmDSpT3SMkivPf/4Dw4bB1q0wcSL07h3piiRJUh0XSu60VaOOi7ppGLuy\neDH86U/BaX/XXguffGJoliRJUcPgXMdFzTSMXVm9Ohgp17178M/SpUF4buD/PCVJUvQwmdRxEZ+G\nsSubNsGoUdClC+y1FyxbBjfeCPHxka5M0v9v796DoqwXMI4/QChyMKPMy9HOZAnIxXZxTZTUUCS8\nYealRC1vM+axNK3xlnYyT2gOXY5pdcrykqNp2Sg5piPRoKWSmkimgYQxgsbpaMdiCUWXPX/sabMj\nl1dT3l34fmYY2d333X1eXnWeefm9vx8A4DIU53rOtNkwalJRIb36qhQSIhUXS9nZrrHMwcHmZQIA\nAKxrJpYAABEMSURBVKgFs2rUc3U+G0ZNnE7p/fddM2WEhko7dkgWS93nAAAAuArMqoG6kZnpminD\n4XBdXY6PNzsRAACAm8fOqjFjxgyFh4fLYrFoyJAh+umnn8yIgbpw+LA0YIA0bpw0fbq0fz+lGQAA\neCVTivN9992nI0eOKCcnR6GhoVq0aJEZMXA9FRdL48e7SnJCgpSbKyUnM1MGAADwWqa0mISEBPn+\nr0DFxMSouLjYjBim2bp1lxIT5ykubr4SE+dp69ZdZke6ds6elebMcY1dbtVKys+Xpk2TGjc2OxkA\nAMAfYvrNgStWrFBycrLZMepMVSv5FRS4Zr3w2JX8jDh/Xnr9dWnRIikpScrJkdq2NTsVAADANXPd\ninNCQoJKSkoue37hwoVKSkqSJKWkpKhRo0YaOXJkte8zf/589/dxcXGKi4u71lHrVPUr+T3jncW5\nslJav16aO1eKjJQ+/VSKijI7FQAAQI0yMzOVmZl5RfuYNqvGqlWrtHz5cmVkZCigmgUv6uOsGnFx\n87Vz5/zLnr/33vnKzLz8eY/2ySfSrFmSn5+Umirde6/ZiQAAAK6Kkd5pylCN7du3KzU1VTt37qy2\nNNdXHr2Sn1E5Oa7C/O230sKF0vDhko+P2akAAACuK1NuDpwyZYrsdrsSEhIUHR2tyZMnmxHDFB65\nkp9RJ05IY8ZIiYnSwIHS0aPSgw9SmgEAQINgyhXn/Px8Mz7WI3jUSn5G/ec/rivLK1ZIkydLx45J\nN95odioAAIA6xcqBqN65c9KyZdLixdIDD0jz50t//rPZqQAAAK45jx3jDA9XWSmtXSvNmydFR0u7\ndknh4WanAgAAMBXFGb9xOqUdO1w3/jVp4irP3bubnQoAAMAjUJzhcvCgNHOm6wbARYukIUO46Q8A\nAOASpsyqAQ/y3XfSqFHSgAHS0KHSkSOuPynNAAAAv0NxbqjOnJGefFLq3FkKCXHNlPHXv0r+/mYn\nAwAA8EgU54amvFx64QUpLMw1a8aRI67ZMpo2NTsZAACAR2OMc0PhcEjvviv97W9Sly7S7t2u8gwA\nAABDKM71ndMpbdvmmimjWTNpwwYpNtbsVAAAAF6H4lyf7d/vmimjpMQ1PGPQIG76AwAAuEqMca6P\nCgqkESOkwYOl5GTp8GHp/vspzQAAAH8Axbk++fe/palTXWOYo6JcM2VMnCjdwC8WAAAA/iiKc31Q\nVialpLiWxXY6pW++cS2X/ac/mZ0MAACg3qA4e7OLF6W335ZCQ6WcHCkrS1q6VGrRwuxkAAAA9Q6/\nw/dGTqe0ZYs0e7arJG/a5BqeAQAAgOuG4uxtsrJcM2X8+KOUmir1789NfwAAAHWAoRre4tgxadgw\n19fYsa6hGQMGUJoBAADqCMXZ0/3rX9Jjj7kWLbHZXAV6/HjJz8/sZAAAAA0KxdlT2e3SggVSRITk\n7y/l5kpz5kiBgWYnAwAAaJAozp7mwgXpn/90zZSRm+ta/e8f/5CaNzc7GQAAQIPGzYGewumUNm92\nXVVu08Y1a4bNZnYqAAAA/A/F2RPs3u2aKaO01HV1OTGRm/4AAAA8DMXZTL+OW/7yS+nvf5dGj+am\nPwAAAA/FGGcznD8vTZok9ejhmi0jL08aM4bSDAAA4MG44myGRo2kjh2lhQulm282Ow0AAAAM8HE6\nnU6zQ1THx8dHHhwPAAAA9YSR3slQDQAAAMAAijMAAABgAMUZAAAAMIDiDAAAABhAcQYAAAAMoDgD\nAAAABlCcAQAAAAMozgAAAIABFGcAAADAAIozAAAAYADFGQAAADCA4gwAAAAYQHEGAAAADKA4AwAA\nAAZQnAEAAAADKM4AAACAARRnAAAAwACKMwAAAGAAxRkAAAAwgOIMAAAAGEBxBgAAAAygOAMAAAAG\nUJwBAAAAAyjOAAAAgAEUZwAAAMAAijMAAABgAMUZAAAAMIDiDAAAABhAcQYAAAAMMKU4P/PMM7JY\nLLJarYqPj1dRUZEZMXCdZWZmmh0BV4lz5904f96Lc+fdOH/1nynFeebMmcrJydGhQ4c0ePBgPffc\nc2bEwHXGfyDei3Pn3Th/3otz5904f/WfKcW5adOm7u/tdruaN29uRgwAAADAsBvM+uC5c+dqzZo1\nCgwMVFZWllkxAAAAAEN8nE6n83q8cUJCgkpKSi57fuHChUpKSnI/fuGFF5SXl6eVK1detm379u1V\nUFBwPeIBAAAAbnfeeae+/fbbGre5bsXZqBMnTqh///76+uuvzYwBAAAA1MiUMc75+fnu79PS0hQd\nHW1GDAAAAMAwU644Dxs2THl5efLz89Odd96pN954Qy1atKjrGAAAAIBhpg/VAAAAALyBx68cyGIp\n3mvGjBkKDw+XxWLRkCFD9NNPP5kdCVfggw8+UGRkpPz8/HTw4EGz48CA7du3q0OHDgoJCdHixYvN\njoMrMH78eLVs2VIdO3Y0OwquQlFRkXr16qXIyEhFRUXp1VdfNTsSDDp37pxiYmJktVoVERGhOXPm\n1Li9x19xLi0tdc/7vHTpUuXk5Ojtt982ORWMSE9PV3x8vHx9fTV79mxJrllU4B1yc3Pl6+urRx99\nVC+99JI6depkdiTUwOFwKCwsTJ988onatGmju+++W++9957Cw8PNjgYDPvvsMwUFBemRRx7R4cOH\nzY6DK1RSUqKSkhJZrVbZ7XbZbDZt3ryZf39e4pdfflFgYKAuXryo7t2768UXX1T37t2r3Nbjrziz\nWIr3SkhIkK+v669YTEyMiouLTU6EK9GhQweFhoaaHQMG7du3T+3bt9ftt98uf39/jRgxQmlpaWbH\ngkE9evRQcHCw2TFwlVq1aiWr1SpJCgoKUnh4uE6dOmVyKhgVGBgoSaqoqJDD4dDNN99c7bYeX5wl\n12Ipf/nLX7R69Wr3lUt4lxUrVqh///5mxwDqrZMnT+q2225zP27btq1OnjxpYiKgYSosLFR2drZi\nYmLMjgKDKisrZbVa1bJlS/Xq1UsRERHVbusRxTkhIUEdO3a87GvLli2SpJSUFJ04cUJjx47V9OnT\nTU6LS9V27iTX+WvUqJFGjhxpYlJUxcj5g3fw8fExOwLQ4Nntdg0bNkxLlixRUFCQ2XFgkK+vrw4d\nOqTi4mLt2rVLmZmZ1W5r2pLbl0pPTze03ciRI7lq6WFqO3erVq3Sxx9/rIyMjDpKhCth9N8ePF+b\nNm1+d/N0UVGR2rZta2IioGG5cOGChg4dqtGjR2vw4MFmx8FVaNasmQYMGKADBw4oLi6uym084opz\nTVgsxXtt375dqampSktLU0BAgNlx8Ad4+D3EkNS5c2fl5+ersLBQFRUV2rBhgwYNGmR2LKBBcDqd\nmjBhgiIiIjRt2jSz4+AKnD59WmfPnpUklZeXKz09vcau6fGzarBYivcKCQlRRUWFe5B9t27d9Prr\nr5ucCkZt2rRJU6dO1enTp9WsWTNFR0dr27ZtZsdCDbZt26Zp06bJ4XBowoQJtU6rBM+RnJysnTt3\n6syZM2rRooUWLFigcePGmR0LBn3++efq2bOn7rrrLvewqUWLFqlv374mJ0NtDh8+rDFjxqiyslKV\nlZV6+OGHNWPGjGq39/jiDAAAAHgCjx+qAQAAAHgCijMAAABgAMUZAAAAMIDiDAAAABhAcQYAAAAM\noDgDAAAABlCcATRoZ86cUXR0tKKjo9W6dWu1bdtW0dHRCg4OVmRkZJ1mSUtL0zfffON+/Oyzz17V\nqpuFhYXq2LFjla8dOXJEvXv3VocOHRQaGqrnn3/+qvPWpKpj+fTTTyVJcXFx+vLLL6/L5wLA9URx\nBtCg3XLLLcrOzlZ2drYmTZqkJ598UtnZ2Tp06JB8fa/9f5EOh6Pa1zZt2qSjR4+6Hz/33HOKj4+/\nZp9dXl6u+++/X08//bRyc3OVk5OjPXv2XJeFiao6lt69e0uSfHx83ItEAIA3oTgDwCV+XRPK6XTK\n4XBo4sSJioqKUmJios6dOydJKigoUL9+/dS5c2f17NlTeXl5klxXenv37i2LxaI+ffqoqKhIkjR2\n7FhNmjRJXbt21axZs6rcf8+ePdqyZYtmzJihTp066fjx4xo7dqw+/PBDSdL+/ft1zz33yGq1KiYm\nRna7XYWFherZs6dsNptsNpv27t1b47GtW7dO3bt3V58+fSRJTZo00bJly7R48WJJ0vz58/XSSy+5\nt4+KitKJEyckSQ888IA6d+6sqKgoLV++3L1NUFCQ5s2bJ6vVqm7duumHH36o9VgutWPHDsXGxspm\ns+nBBx9UWVmZJGn27NmKjIyUxWKpcRUvAKhLN5gdAAA8VX5+vtavX6+33npLDz30kD788EONGjVK\nEydO1Jtvvqn27dvriy++0OTJk5WRkaEpU6Zo3Lhxevjhh7Vy5UpNnTpVmzZtkiSdOnVKe/fulY+P\nj+Lj46vcf9CgQUpKStKQIUMk/XZltqKiQiNGjND7778vm80mu92uJk2aqGXLlkpPT1fjxo2Vn5+v\nkSNHav/+/dUez9GjR2Wz2X733B133KHS0lLZ7fbLrgJf+njFihUKDg5WeXm5unTpomHDhik4OFi/\n/PKLunXrpueff16zZs3S8uXLNXfu3GqP5VKnT59WSkqKMjIy1KRJEy1evFgvv/yyHnvsMW3evFm5\nubmSpJ9//vkqzyAAXFsUZwCoRrt27XTXXXdJkmw2mwoLC1VWVqY9e/Zo+PDh7u0qKiokSVlZWdq8\nebMkafTo0Zo5c6YkV2kcPny4fHx8ZLfbtXfv3ir3l3674n3p47y8PLVu3dpdeoOCgtz7Pf7448rJ\nyZGfn5+OHTtW6zH9//v/6sKFCzXut2TJEvexFRUVKT8/X126dFGjRo00YMAASa6fUXp6eq2f9etr\nWVlZOnr0qGJjY93HExsbq2bNmikgIEATJkzQwIEDNXDgwFqPCwDqAsUZAKrRuHFj9/d+fn46d+6c\nKisrFRwcrOzs7Cr3qa4sBgYGSpIqKyt10003Vbt/VWN/qxsP/Morr6h169Zas2aNHA6HAgICajye\niIgI7dq163fPHT9+XIGBgQoODtYNN9ygyspK92u/Dk3JzMxURkaGsrKyFBAQoF69erlf8/f3d2/v\n6+urixcv1pr7UgkJCVq3bt1lz+/bt08ZGRnauHGjli1bdlU3SQLAtcYYZwAwyOl0qmnTpmrXrp02\nbtzofu6rr76SJMXGxmr9+vWSpLVr16pnz56XvceNN95Y7f5Nmza9bFiCj4+PwsLC9P333+vAgQOS\npNLSUjkcDv38889q1aqVJOndd9+t8cZDSRo1apQ+//xzdwktLy/XE088oaeeekqSdPvtt+vgwYOS\npIMHD+q7776T5BoqERwcrICAAOXm5iorK6vWn1VVx/L/x9W1a1ft3r1bBQUFkqSysjLl5+errKxM\nZ8+eVb9+/fTyyy8rJyen1s8DgLpAcQaAS1x6lbS6Mb9r167VO++8I6vVqqioKH300UeSpKVLl2rl\nypWyWCxau3atlixZUuV7Vbf/iBEjlJqaKpvNpuPHj7u39/f314YNGzRlyhRZrVYlJibq/Pnzmjx5\nslavXi2r1aq8vDz3EI6qsktSQECAPvroI6WkpCgsLEy33nqrQkJCNH36dEnS0KFD9eOPPyoqKkqv\nvfaawsLCJEl9+/bVxYsXFRERoTlz5qhbt27V/rx+fVzdsVyqefPmWrVqlZKTk2WxWBQbG6u8vDyV\nlpYqKSlJFotFPXr00CuvvFLl/gBQ13ycNQ1CAwDUW2lpaVqwYIG2bt3qvnINAKgexRkAAAAwgKEa\nAAAAgAEUZwAAAMAAijMAAABgAMUZAAAAMIDiDAAAABhAcQYAAAAM+C93U841JB7aiwAAAABJRU5E\nrkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x4eb6d90>" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"I cannot seem to select the dates for in sample prediction, much less tell the system to project out of sample\n", | |
"I would have thought I could use the Pandas DF notation like ('2012-1-1':'2013-9-1') Assuming I just wanted the in \n", | |
"sample prediction for that period." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"predict_units = arma_mod12.predict('2012-1-1',dynamic=True)\n", | |
"print predict_units" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"2012-01-01 2630.343093\n", | |
"2011-12-01 2560.204981\n", | |
"2011-11-01 2716.596701\n", | |
"2011-10-01 2930.735217\n", | |
"2011-09-01 3154.498396\n", | |
"2011-08-01 3598.095215\n", | |
"2011-07-01 3649.452966\n", | |
"2011-06-01 3785.937579\n", | |
"2011-05-01 3630.817452\n", | |
"2011-04-01 3478.927091\n", | |
"2011-03-01 3302.637450\n", | |
"2011-02-01 2970.171888\n", | |
"2011-01-01 2847.359800\n", | |
"2010-12-01 2737.204984\n", | |
"2010-11-01 2833.168512\n", | |
"...\n", | |
"2001-07-01 3281.110218\n", | |
"2001-06-01 3291.310834\n", | |
"2001-05-01 3302.873167\n", | |
"2001-04-01 3312.975171\n", | |
"2001-03-01 3319.301975\n", | |
"2001-02-01 3320.582686\n", | |
"2001-01-01 3316.860082\n", | |
"2000-12-01 3309.402505\n", | |
"2000-11-01 3300.334602\n", | |
"2000-10-01 3292.067383\n", | |
"2000-09-01 3286.688035\n", | |
"2000-08-01 3285.465379\n", | |
"2000-07-01 3288.575575\n", | |
"2000-06-01 3295.119256\n", | |
"2000-05-01 3303.394592\n", | |
"Length: 141\n" | |
] | |
} | |
], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"7. ARMA prediction?" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Again I just want the 2013 projection and maybe into 2014? Looks like in spite of all that the red dotted line is beginning to track fairly well. at least in the most recent time periods." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ax = actdf.plot(figsize=(12,8))\n", | |
"ax = predict_units.plot(ax=ax, style='r--', label='Dynamic Prediction');\n", | |
"ax.legend();\n", | |
"#ax.axis((-20.0, 38.0, -4.0, 200.0));\n", | |
"ax.plot()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 17, | |
"text": [ | |
"[]" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHOCAYAAACFGv/2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VOX5PvB7krBDgARIIAECJhADCAhE3BFktVJERaMI\nWLdCq2hdS6vybbWgotaNai0/RKgirSgqihQ1qAgEUdYIJOyEELaEQAKEJOf3x8OZTJLZ52xz5v5c\nF5dm1jN5MzPPPHO/7+tQFEUBEREREREBAKLMPgAiIiIiIithgUxERERE5IIFMhERERGRCxbIRERE\nREQuWCATEREREblggUxERERE5MJngbx9+3b07dvX+a9ly5Z49dVXcfz4cQwdOhTdunXDsGHDUFJS\n4rzOjBkzkJaWhvT0dCxfvtx5+vr169GrVy+kpaVh6tSp+jwiIiIiIqIQOAJZB7m6uhpJSUnIycnB\na6+9hjZt2uCxxx7Dc889h+LiYsycORO5ubm47bbbsG7dOhQUFODaa69FXl4eHA4HMjMz8frrryMz\nMxOjRo3CAw88gBEjRuj5+IiIiIiIAhJQxGLFihVITU1Fx44d8cknn2DixIkAgIkTJ+Ljjz8GACxZ\nsgRZWVlo0KABUlJSkJqairVr16KwsBAnT55EZmYmAGDChAnO6xARERERWUVABfLChQuRlZUFACgq\nKkJCQgIAICEhAUVFRQCAgwcPIjk52Xmd5ORkFBQU1Ds9KSkJBQUFIT8AIiIiIiIt+V0gV1RU4NNP\nP8XNN99c7zyHwwGHw6HpgRERERERmSHG3wt+8cUX6NevH9q2bQtAusaHDh1CYmIiCgsL0a5dOwDS\nGd6/f7/zegcOHEBycjKSkpJw4MCBWqcnJSXVu5/U1FTs3Lkz6AdEREREROTLBRdcgPz8fLfn+d1B\nfv/9953xCgAYPXo05s2bBwCYN28exowZ4zx94cKFqKiowO7du5GXl4fMzEwkJiYiNjYWa9euhaIo\nmD9/vvM6rnbu3AlFUfjPhH9PP/206cfAfxxL/uNY2vUfx9Ie/ziO9vnnrSHrVwe5rKwMK1aswNtv\nv+087YknnsC4ceMwZ84cpKSkYNGiRQCAjIwMjBs3DhkZGYiJicHs2bOd8YvZs2dj0qRJOH36NEaN\nGsUVLCxmz549Zh8CaYRjaR8cS/vgWNoDxzEy+FUgN2vWDEePHq11WlxcHFasWOH28tOmTcO0adPq\nnd6vXz9s3rw5iMMkIiIiIjIGd9Ijp0mTJpl9CKQRjqV9cCztg2NpDxzHyBDQRiFGcDgcsNghERER\nEZHNeKs52UEmp+zsbLMPgTTCsbQPjqV9RPpYxsXFOZeF5T/+M/JfXFxcwH+vfi/zRkRERBSs4uJi\nfkNMpnA4At+rgxELIiIi0h3f38ksnv72vP1NMmJBREREROSCBTI5RXo+zk44lvbBsbQPjiVR+GCB\nTERERBSCyZMn45lnnjH7MEhDzCATERGR7qz8/h4VFYX8/Hx07drVedr06dOxc+dOzJ8/P6Dbys7O\nxh133IH9+/drfZgUJGaQiYiIiDQQzMoHZB8skMmJ+Tj74FjaB8fSPjiW4cW1s5idnY3k5GS89NJL\nSEhIQIcOHfDOO+84z580aRKefPJJlJeXY+TIkTh48CBatGiB2NhYHDp0CDk5Oejfvz9atmyJxMRE\nPPzwwyY8IgoEC2QiIiIiH4qKilBaWoqDBw9izpw5+N3vfocTJ04AgHNDiqZNm2LZsmXo0KEDTp48\nidLSUiQmJmLq1Kl46KGHcOLECezatQvjxo0z+dGQLyyQyWnQoEFmHwJphGNpHxxL++BY+uZwaPNP\nDw0aNMBTTz2F6OhojBw5Es2bN8f27dud56sdZ3eZ1oYNGyIvLw9Hjx5F06ZNcckll+hzkKQZFshE\nRERkCYqizb9ARUdH49y5c7VOO3fuHBo0aOD8OT4+HlFRNWVT06ZNcerUKb9uf86cOdixYwcuvPBC\nZGZmYunSpYEfJBmKBTI5MR9nHxxL++BY2gfH0ro6deqE3bt31zpt9+7dSElJ8fs21El97ib3paam\n4r333sORI0fw+OOP46abbsLp06dDOmbSFwtkIiIiimi33HILnnnmGRQUFKC6uhorVqzAZ599hptu\nusmv6yuK4oxWJCQk4NixYygtLXWev2DBAhw5cgQA0LJlSzgcjlrdaLKeGLMPgKyD+Tj74FjaB8fS\nPjiW1vXUU0/hqaeewhVXXIHi4mJnxzcjI8N5GW/LvqmT9AAgPT0dWVlZ6Nq1K6qrq7F161Z8+eWX\nePjhh1FeXo6UlBQsXLgQjRo10v1xUfC4UQgRERHpju/vZBZuFEIhYT7OPjiW9sGxtA+OJVH4YIFM\nREREROSCEQsiIiLSHd/fySyMWBARERERhYgFMjkxH2cfHEv74FjaB8eSKHywQCYiIiIicsEMMhER\nEemO7+9kFmaQiYiIiIhCxAKZnJiPsw+OpX1wLO2DY0lamTx5Mp555hmzD6OWSZMm4cknnwQAfPfd\nd0hPTw/qdqzy2LjVNBEREUW8lJQUHD58GDExMYiOjkZGRgYmTJiAe++91+s202b4xz/+EdT11McY\nHR2NZs2aYeTIkXj99dfRrFmzkI/JdbvtK6+8Etu2bfN5nXfeeQdz5szBd9995zwt2MemNXaQyWnQ\noEFmHwJphGNpHxxL++BYWpvD4cBnn32G0tJS7Nu3D0888QSee+453HXXXWYfmmbUx3jy5En89NNP\n+PHHH912aysrK4O6fTtlzFkgExEREblo0aIFrr/+enzwwQeYN28etm7dinXr1iExMbFWEbh48WL0\n6dMHADB9+nSMGzcOEydORGxsLHr27In169c7Lztz5kykpqYiNjYWPXr0wMcff+w875133sHll1+O\nP/zhD2jdujVSU1Pxww8/YO7cuejUqRMSEhLw7rvvOi/vGmcAgCVLlqBPnz5o2bIlUlNT8eWXX/p8\njB06dMCIESOwdetWAEBUVBRmz56NtLQ0dO/eHQDw2WefoU+fPmjdujUuv/xybN682Xn9n3/+GRdf\nfDFiY2Nx66234syZM87zsrOz0bFjR+fP+/fvx9ixY9GuXTu0adMG999/P7Zt24bf/va3WL16NVq0\naIG4uDi3j+3tt99GWloa4uPj8etf/xqFhYXO86KiovDWW2+hW7duaN26NX7/+9/7fNz+YoFMTszH\n2QfH0j44lvbBsQw/AwYMQHJyMr7//nsMGDAA8fHxtYrP+fPnY+LEic6fP/30U2RlZeHEiRMYPXp0\nrYItNTUV33//PUpLS/H0009j/PjxKCoqcp6fk5OD3r174/jx48jKysK4cePw008/YefOnViwYAF+\n//vfo7y8HEDtOENOTg4mTpyIF198ESdOnMC3336LlJQUj49JLfD379+PL774An379nWet2TJEqxb\ntw65ubn4+eefcdddd+Htt9/G8ePHcd9992H06NE4d+4cKioqMGbMGEycOBHFxcW4+eab8eGHH7qN\nolRVVeFXv/oVunTpgr1796KgoABZWVlIT0/HW2+9hUsvvRQnT57E8ePH6z22r7/+GtOmTcN//vMf\nFBYWonPnzrj11ltr3f7SpUvx448/YtOmTVi0aJFfHw78wQKZiIiIrGH6dMDhqP9v+nT/L+/pskHq\n0KGDs3ibMGECFixYAAA4fvw4li9fjttuu8152SuvvBIjRoyAw+HA+PHjsXHjRud5N910ExITEwEA\n48aNQ1paGtauXes8v0uXLpg4cSIcDgfGjRuHgwcP4qmnnkKDBg0wdOhQNGzYEPn5+fWOb86cObjr\nrrswZMgQ5/GqHeC6FEXBmDFj0Lp1a1x55ZUYNGgQpk2b5jz/j3/8I1q1aoVGjRrhn//8J+677z4M\nGDAADocDEyZMQKNGjbB69WqsWbMGlZWVmDp1KqKjo3HjjTdiwIABbu8zJycHhYWFeOGFF9CkSRM0\natQIl112mfN4vPn3v/+Nu+66C3369EHDhg0xY8YMrF69Gvv27XNe5oknnkBsbCw6duyIa665Bhs2\nbPB6m/7iJD1yYj7OPjiW9sGxtA+OpR+mTw+swA308kEoKChwfv1/++23o0ePHigvL8eiRYtw1VVX\nISEhwXlZ1/9v2rQpzpw5g+rqakRFReHdd9/Fyy+/jD179gAATp06hWPHjrm9bpMmTQAAbdu2rXXa\nqVOn6h3fgQMHcN111/n1WBwOB5YsWYLBgwe7Pd81FrF37168++67eO2115ynnTt3DoWFhVAUBUlJ\nSbWu27lzZ7e3uX//fnTu3BlRUYH3ZAsLC9G/f3/nz82aNUN8fDwKCgrQqVMnAHB+6ADkd+7udxQM\ndpCJiIiI3Fi3bh0KCgpwxRVXAACSk5MxcOBALF68GAsWLMAdd9zhvKy3lS727t2Le++9F2+88QaO\nHz+O4uJi9OzZU5NJbR07dnTbWQ6G62Po1KkT/vSnP6G4uNj579SpU7jlllvQvn17FBQU1Lru3r17\nPR7fvn37UFVV5fX+3OnQoYPzAwUAlJWV4dixY/WKcz2wQCYn5uPsg2NpHxxL++BYWp9asJaWluKz\nzz5DVlYW7rjjDvTo0cN5mQkTJuC5557Dli1bMHbs2HrXdaesrAwOhwNt2rRBdXU15s6diy1btoR0\nnOr93XXXXZg7dy6+/vprVFdXo6CgANu3bw/6tlX33HMP3nzzTeTk5EBRFJSVlWHp0qU4deoULrvs\nMsTExODVV1/FuXPnsHjxYqxbt87t7WRmZqJ9+/Z44oknUF5ejjNnzuCHH34AIF3zAwcO4Ny5c24f\nW1ZWFubOnYuNGzfi7NmzmDZtGgYOHOjsHrv7vWiFBTIRERERgOuvvx6xsbHo1KkTZsyYgYcffhhz\n586tdZmxY8di3759uOGGG9C4cWPn6a6Ty1xPA4CMjAw8/PDDuPTSS5GYmIgtW7Y4u9K+ruuO6+UH\nDBiAuXPn4qGHHkKrVq1wzTXX1Mro+qvu/fXr1w9vv/02fv/73yMuLg5paWnOlTQaNGiAxYsX4513\n3kF8fDwWLVqEG2+80e3tRUdH49NPP0V+fj46deqEjh07YtGiRQCAIUOGoEePHkhMTES7du3qPbYh\nQ4bgr3/9K2688UZ06NABu3fvxsKFCz0es7vfY7AcisUWreNe7URERPZjp/f3tLQ0vPXWWx6zvGQt\nnv72vP1NsoNMRERE5KfFixfD4XCwOLY5FsjkxHycfXAs7YNjaR8cy/A3aNAgTJkyBW+88YbZh0I6\n4zJvRERERH7gh5zIwQwyERER6Y7v72QWZpCJiIiIiELEApmc+NWRfXAs7YNjaR8cS6LwwQwyERER\n6a5169aarVFLFIjWrVsHfB1mkImIiIgo4jCDTERERETkJxbI5MR8nH1wLO2DY2kfHEt74DhGBhbI\nREREREQumEEmIiIioojDDDIRERERkZ9YIJMTc1X2wbG0D46lfXAs7YHjGBlYIBMRERERuWAGmYiI\niIgiDjPIRERERER+YoFMTsxV2QfH0j44lvbBsbQHjmNkYIFMREREROSCGWQiIiIiijjMIBMRERER\n+cmvArmkpAQ33XQTLrzwQmRkZGDt2rU4fvw4hg4dim7dumHYsGEoKSlxXn7GjBlIS0tDeno6li9f\n7jx9/fr16NWrF9LS0jB16lTtHw2FhLkq++BY2gfH0j44lvbAcYwMfhXIU6dOxahRo/DLL79g06ZN\nSE9Px8yZMzF06FDs2LEDQ4YMwcyZMwEAubm5+OCDD5Cbm4tly5ZhypQpzvb15MmTMWfOHOTl5SEv\nLw/Lli3T75EREREREQXBZwb5xIkT6Nu3L3bt2lXr9PT0dKxcuRIJCQk4dOgQBg0ahG3btmHGjBmI\niorC448/DgAYMWIEpk+fjs6dO2Pw4MH45ZdfAAALFy5EdnY23nzzzdoHxAwyEREREekspAzy7t27\n0bZtW9x55524+OKLcc8996CsrAxFRUVISEgAACQkJKCoqAgAcPDgQSQnJzuvn5ycjIKCgnqnJyUl\noaCgIKQHRkREwfvvf4HKSrOPgojIenwWyJWVlfjpp58wZcoU/PTTT2jWrJkzTqFyOBxwOBy6HSQZ\ng7kq++BY2odeY3nmDJCVBeTl6XLz5Aafl/bAcYwMMb4ukJycjOTkZAwYMAAAcNNNN2HGjBlITEzE\noUOHkJiYiMLCQrRr1w6AdIb379/vvP6BAweQnJyMpKQkHDhwoNbpSUlJbu9z0qRJSElJAQC0atUK\nffr0waBBgwDU/GHyZ/7Mnz3/rLLK8fDn4H/esGGDLre/YQNQWZmNL74ALrzQOo/Xzj9v2LDBUsfD\nn4P7WWWV4+HP/v+8YcMG56ISe/bsgTd+rYN81VVX4V//+he6deuG6dOno7y8HAAQHx+Pxx9/HDNn\nzkRJSQlmzpyJ3Nxc3HbbbcjJyUFBQQGuvfZa5Ofnw+Fw4JJLLsGrr76KzMxMXHfddXjggQcwYsSI\n2gfEDDIRke5eew144AFg/nxg/Hizj4aIyHjeak6fHWQAeO2113D77bejoqICF1xwAebOnYuqqiqM\nGzcOc+bMQUpKChYtWgQAyMjIwLhx45CRkYGYmBjMnj3bGb+YPXs2Jk2ahNOnT2PUqFH1imMiIjJG\nTg4QHw8UFpp9JERE1sOd9MgpOzvb+VUEhTeOpX3oNZbp6cDAgUDr1sDLL2t+8+QGn5f2wHG0D+6k\nR0RETiUlQEEBcO217CATEbnDDjIRUR1nzgBbtwL9+pl9JPpYsQL4y1+Av/4VePJJ4NtvzT4iIiLj\nsYNMRBSAzz4Dbr3V7KPQz7p1QGYm0L49O8hERO6wQCanukvYUPjiWIYmJwfIzweKi80+En3GMicH\nGDBACuSDBwF+aWcMPi/tgeMYGVggExHVsW4d0Lgx8OOPZh+JPnJypIPcogUQFQWUlpp9RERE1sIM\nMhGRi6oqWdnhppuACy4A/vQns49IWwUFQJ8+wOHDgMMBdO8OLFkiq1oQEUUSZpCJiPy0fTvQrh0w\nYoR0ku1m3TqJV5xfnt4ZsyAiohoskMmJuSr74FgGT83nZmZao0DWeizVCXqqDh04Uc8ofF7aA8cx\nMrBAJiJyoRaQnTsDFRUSSbAT9QOAih1kIqL6mEEmInIxYIDsLHfFFcB11wH33AOMGWP2UWmjuhqI\niwN27JAYCQC8+KJ8CHjpJXOPjYjIaMwgExH54exZ2SCkb1/5ecAA6bjaRX6+TEBUi2PAXh3kw4dl\nE5TTp80+EiIKdyyQyYm5KvvgWAZn0yYgLQ1o1kx+HjDA/ByylmNZN14B2CuD/O67ssFLu3bA8OHS\nHd+yxTrrPPN5aQ8cx8jAApmI6Dx1fWCVWiBXV5t3TFqq+/gAe3WQDx0CHn8cOHAAmDxZOubDhwOv\nvWb2kRFRuGEGmYjovEmTgMsuA+69t+a0lBRg+XKgWzezjko7l14KPPcccNVVNaedPClF8smTNUu/\nhavx46UgvuOOmtM++UQK5P/9z7zjIiJrYgaZiMgP7jqsVlnuLVQVFRIhufji2qe3aCGF8cmT5hyX\nlg4dAhITa5921VXAmjWSLyci8hcLZHJirso+OJaBKy0F9u0DevSofbrZE/W0GsstW4CuXYHmzeuf\n5y1mkZ8PzJunySHozl2B3KqV7BZohcmWfF7aA8cxMrBAJiICsH490Ls30KBB7dPt0kF2N0FP5W2i\n3qefyuS3cHDoEJCQUP/0wYOBb74x/niIKHyxQCanQYMGmX0IpBGOZeDULZjruvhiYONG4Nw5448J\n0G4s3cVHVN46yBs3AsXFmhyCrioqgBMngPj4+uddc401CmQ+L+2B4xgZWCATEcFzAdmihUzU27Kl\n/nmnToXPChe5uUCvXu7P89ZB3rgROH5cv+PSyuHDQNu2QHR0/fOuuAL48UfgzBnjj4uIwhMLZHJi\nrso+OJaB89RBBqRwrpthPXAAyMgA3nhD3+PSaiyPHHEfPwA8d5ArKqSwDocOsrv8sapFC6BnT2D1\namOPqS4+L+2B4xgZWCATUcQrKpJVHFJT3Z9fd8OQ4mJgxAigXz9gwQJjjjFUR49Kh9UdTx3kbduk\ne15WBlRW6np4ISsq8lwgA9aJWRBReGCBTE7MVdkHxzIw69YB/ft7XgfYdaLe6dPA9dcDw4YB//kP\nsGcPsHOnfsemxViePSvHHRvr/nxPHeSNG2Xb7dhYoKQk5MPQlbcOMmCNApnPS3vgOEYGFshEFPG8\nTWADgIsukuXOSktlK+POnYFZs4CYGOCmm4D33zfuWINx7JhMXvP0AcBTB3njRqBPH6B1a+vHLHwV\nyJdfDvz8M1BebtwxEVH4YoFMTsxV2QfHMjDe8scA0LChZFhHjJCJXnPnAlHnXz2zsqRA1msDUC3G\n0lu8AvDeQe7dG4iLC/8CuWlT6YavWmXcMdXF56U9cBwjAwtkIopoiiIFsrcOMiDbNFdWAh9+KAWz\n6rLLZDWLzZv1Pc5QHDkCtGnj+fwWLeS/rrvpKQqwYYMUyHboIAPWiFkQUXhggUxOzFXZB8fSf/n5\nQJMm0kX15tlngZUr6+9EFxUlsQu9YhZajKWvDrLDUb+LrEYu2reXAtnqS7152iTE1TXXAF9/bczx\nuMPnpT1wHCMDC2QiimgrVgBDhvi+XLNmUki7o3fMIlS+OshA/Ryymj92OOwRsQDkW4AtW2p3yomI\n3GGBTE7MVdkHx9J/K1YA114b2m307i3Fsx7r7GqVQfanQHbtIKv5Y8A+EYvGjSVr/t13xhxTXXxe\n2gPHMTKwQCaiiFVVJZlUfzrI3jgcNV1kK/IVsQDqRyzU/DFg/YiFuk6zp2XsXDGHTET+YIFMTsxV\n2QfH0j8//SSdU1/5Y39kZcm6yFpvqKHFWAYbsQiXDrK6SYinZexcmVkg83lpDxzHyMACmYgi1v/+\nF3q8QpWWBnTsaM3upD8RC9cO8unTwN69QHq6/Gz1DLI/8QpVZiawfTvw6aeyrjURkTsskMmJuSr7\n4Fj6Z8UKYOhQ7W4vKwt47z3tbg/QZiyPHPEdsXDtIG/ZAnTvXrOcndUjFoEUyI0aAa++Crz8sjzm\nAQOARx8FjHjK8HlpDxzHyMACmYgiUnm57KB31VXa3eYttwBLlshmIlYSaAfZNX8MWD9iEUiBDAB3\n3inLvR07Brz0EtCyJTByJFe3IKIaLJDJibkq++BY+vb997KzmrpJhhaSkoDUVNl4RCuhjqWi+L+K\nhdpBds0fA/aKWLhq1Ai48krgz3+WDwF6Ry74vLQHjmNkYIFMRBFJy/yxq65dgX37tL/dYJWWyvJm\njRp5v1yLFkB1tXRR6xbI4RCx8LVJiC+xscwkE1ENFsjkxFyVfXAsfdM6f6zq2BHYv1+72wt1LP3p\nHgOyAkSHDkBBAbBpU+0CuXlzoKJC/llRsB1kV0YUyHxe2gPHMTKwQCaiiHPkCLBrl0zQ0lrHjsCB\nA9rfbrD8WQNZ1b69bHYSGwvEx9ec7nBYO4ccLgUyEYUPFsjkxFyVfXAsvfv6a+Dqq4EGDbS/7eRk\nbTvIoY6lP2sgqzp0AL74onb3WGXlmIW6DnIoWrTQf5Ien5f2wHGMDCyQiSji6JU/BrSPWIQq0A7y\n//7nuUC2YgdZUZhBJiLtsUAmJ+aq7EPPsVyyBFi1Sreb152i6F8gaxmxCHUsA+0gl5S4L5CtupJF\nSQnQpIn8CwUzyOQvjmNkiDH7AIgovLz0EnD4MLB5MxAThq8gO3fKdtAXXqjP7bdrB5w4IWshN26s\nz30Ewt9JekDNltvh1EHWIn8MGBOxIKLwwQ4yOTFXZR96jWVFBbB+vWys8M47utyF7tTuscOhz+1H\nRUknVqsucqhjGUjEokMHoGlTWcu5LqtmkLUqkI3oIPM11h44jpGBBTIR+e2nn4C0NNmqd/p02Y0u\n3KxYoV+8QmVkDvnwYe8bkwQSsejVC3jwQSA6uv55Vo1YhFOBTEThgwUyOTFXZR96jeX33wNXXAFk\nZgKXXiqFcjhRFODbbwG9G0Ba5pB9jeXnn8tOcJ4EErFo2xZ49ln351k5YhHqBD1ACmS9IxZ8jbUH\njmNkYIFMRH5btUoKZEAKqVmzgGPHzD2mQOTny2Sujh31vR+tl3rzprgYyMvzfP6RI/5HLLyxe8Si\nRQt2kImoBgtkcmKuyj70GEtFkQ7y5ZfLz926ATffDMyYofld6eaHH4DLLtP/frSMWPgay5ISYO9e\nz7vcBdJB9saqEQst1kAGmEEm/3EcIwMLZCLyy44dQLNm0h1VPf00MHeuFGjh4IcfJBqiNyMzyCUl\nQHU1sGdP/fPOnQNOnQJatQr9fsyMWFRXS2789On65zGDTER6YIFMTsxV2YceY+kar1AlJgK/+x3w\n1FOa350uVq82roNsVAa5pET+m59f/7xjx6TzG6XBK72ZEYuyMuCrr4Avv6x/Xjgt88bXWHvgOEYG\nFshE5BfXeIWrRx6R7Yl37zb+mAJx4gSwaxfQp4/+92VkBrmkBEhKcp9D1ipeAZgbsVA7ux9+WP88\ndpCJSA8skMmJuSr70GMs1RUs6oqNBX71K2DpUs3vUlM5OcDFFwMNGuh/X23bStdTi2XwfI1lcTHQ\nv7/7DrJWE/SAmoiFomhze4E4eVLuf+nS2lnrqirpkmvxGJlBJn9xHCMDC2Qi8unwYSm2evRwf/7I\nkbLcmJUZNUEPkE1IkpO13XLak5ISYMAA9wWylh1kdStndzlgvZ08CXTtKrsffvVVzelHjkhnW4sd\nHZs0kcz2uXOh3xYRhT8WyOTEXJV9aD2Wq1bJ5DZPWdahQ6XDbEbx5C+jJuiptJqo508G2YgCGTAv\nZlFaKhnhG28EFi+uOV2reAUgH2r0ziHzNdYeOI6RgQUyEfnkKV6hatVKsr1Wfd+orgbWrjW2QDYq\nh1xSIr/7/fvrdz+1jFgA5q1kcfKkRCDGjgWWLAEqK+V0rTYJUTGHTEQqFsjkxFyVfWg9lqtWuZ+g\n52rUKOvGLHJzpVBs1864+9Sqg+xtLCsrJevcpg3Qvn395fa07iCbVSCrHeSUFPm9fvednK7VGsgq\nvQtkvsako0kFAAAgAElEQVTaA8cxMrBAJiKvysuBzZvla3xv1ALZjElcvqxebWz3GNB2qTdPTpyQ\noi4qCkhNrR+zOHpU2w5yXJw5S72pHWRAYhbqahZaRiwAY5Z6I6LwwAKZnJirsg8txzInB7joIqBp\nU++X69ULOHvW+7bHZjFygp7KiAxySYl0dQH3BfKRI/bqIANSIH/0kcRmtC6Q9e4g8zXWHjiOkYEF\nMhF55U+8ApBJTlZdzcKMAtmIDHJJSc0ueWlp7jvIdiiQT56sKZC7d5fjWLs2/ApkIgofLJDJibkq\n+9ByLH1N0HM1cqRsGmIlR49KIeVpiTq9GJFBdi2QU1Prd+/1mKRndsQCqIlZ6FEg6xmx4GusPXAc\nIwMLZCLyqKoqsO2Zr71WurVlZfoeVyDWrAEyM4HoaGPvNy5ONrXQs+CqWyC7dpAVxX7LvKnGjpUC\nubBQ+wwyO8hEBPhZIKekpOCiiy5C3759kZmZCQA4fvw4hg4dim7dumHYsGEoKSlxXn7GjBlIS0tD\neno6li9f7jx9/fr16NWrF9LS0jB16lSNHwqFirkq+9BqLLdulWW0/F39ITZWJvN9840md68JMybo\nAdptFuIrg6wWyF27yioW6hJoZWWygYa6wYcWzF7mTXXRRfKBZ8eO8IpY8DXWHjiOkcGvAtnhcCA7\nOxs///wzcnJyAAAzZ87E0KFDsWPHDgwZMgQzZ84EAOTm5uKDDz5Abm4uli1bhilTpkA5P6198uTJ\nmDNnDvLy8pCXl4dly5bp9LCISAs//OBf/tiV1XLIZuSPVVrFLDwpLq6ZpNe4sXyYUe9P6wl6gHkR\ni7odZIdDYhYxMTWPXwt6RyyIKHz4HbFQ6qzd9Mknn2DixIkAgIkTJ+Ljjz8GACxZsgRZWVlo0KAB\nUlJSkJqairVr16KwsBAnT550dqAnTJjgvA5ZA3NVxsjNBbZt0/c+tBrL7dsDz+5aabm3ykrgxx+B\ngQPNuX8tCmR/M8hA7ZiF1vEKwLyIRd0OMgDcfLP8fh0O7e5H74gFX2PtgeMYGfzuIF977bXo378/\n3n77bQBAUVEREs5vYZSQkICioiIAwMGDB5GcnOy8bnJyMgoKCuqdnpSUhIKCAs0eCFE4qK4GsrKA\nt94y+0j8s2uXfHUfiIwMeZx6fwjwx6ZNQKdOtYtII+m9FrK7AlmdqKf1BD3AGsu8qfr3B9av1/Z+\nuIoFEali/LnQqlWr0L59exw5cgRDhw5Fenp6rfMdDgccGn6MnzRpElJSUgAArVq1Qp8+fZyf2NTs\nD3/W/mfXXJUVjseOP//1r9nIzQVSU/W9P/W0UG9v06ZsHDsGAIFdf9SoQfj8c6CoSJ/H5+/P8+Zl\nQ15KzLn/srJsbN8e2v1v2LABDz74oNvzt2/PPt9ZlZ8djmx88w0wZcogHD0KVFZmIztbu8eTm5uN\nQ4dCezzB/Hzy5CDExtY/f8MGbe9vz55s7N6t3+P7+9//zvczG/ysnmaV4+HP/v+8YcMG55y5PXv2\nwCslQNOnT1dmzZqldO/eXSksLFQURVEOHjyodO/eXVEURZkxY4YyY8YM5+WHDx+urFmzRiksLFTS\n09Odp7/33nvKfffdV+/2gzgk0sg333xj9iHYWmWlomRkKMrTTytK//763pcWY1ldrShNmyrKiROB\nX3fJEkUZPDjkQwjZ+PGK8q9/mXf/S5cqyrBhod2Gt7G87jpF+eSTmp8XL1aU66+X/3/xRUV58MHQ\n7ruus2cVJSZG/jaM1KKFohQX638/332nKJdfrt/t8zXWHjiO9uGt5ozyXj4D5eXlOHl+1kJZWRmW\nL1+OXr16YfTo0Zg3bx4AYN68eRgzZgwAYPTo0Vi4cCEqKiqwe/du5OXlITMzE4mJiYiNjcXatWuh\nKArmz5/vvA5Zg/opi/SxaJF8hXvvvcC+ffrelxZjefiw7J5XN/vpj8GDZYORqqqQDyMkBw9KxMIs\nWkQsvI2l6yQ9oPZmIXpELBo2BBo1Ak6d0vZ2vVEUWZGjeXP974sZZPIHxzEy+IxYFBUV4YYbbgAA\nVFZW4vbbb8ewYcPQv39/jBs3DnPmzEFKSgoWLVoEAMjIyMC4ceOQkZGBmJgYzJ492xm/mD17NiZN\nmoTTp09j1KhRGDFihI4Pjcg6KiuB6dOBN96QZalOnADOnJGVB6wqmPyxqnlzKa5LSoD4eG2PKxAn\nTpiXPwb0X8Wibga5a1dg9275YHL0KNCli/b3qa5kUTcTrJeyMnmexPgVCAwNM8hEpPL5ktOlSxds\n2LCh3ulxcXFYsWKF2+tMmzYN06ZNq3d6v379sHnz5iAOk4yQnZ3NT8Y6ee89KYyHDJFZ90lJ0llM\nTdXn/rQYy127Qiuw4uKAY8fML5BbtjTv/lu2lAmLoRyHt7GsWyA3bSq/7wMHpEDWuoMM1Kxk0bmz\n9rftjrsJenrRe5k3vsbaA8cxMviMWBBRaM6dA/7v/4C//KVmSaqOHfWPWYQqlA4yIIWUGWvmujK7\nQHY49O0i1y2QgZql3vRYBxkwfiULd0u86UWNWFhhiUIiMhcLZHLiJ2J9zJsnndirr645rVMnfQtk\nLcYy1AI5Pt7cAllRpIA0s0AGQs8hexrLigr516xZ7dPVHLIe6yADxhfIRnaQGzaUHfrOnNHn9vka\naw8cx8jAAplIRxUVwDPPAH/9a+3T9S6QtRDuHeQzZ4CoKPNz3snJ+nSQ1e5x3RU2XTvIekUsjBxX\nIzvIAHfTIyLBApmcXNd4JG189JF09C69tPbpnTrpO3lLi7EM9wLZ7HiFKtSIhaexdBevAKRA3rZN\nHr+W2zCr7NxBBvSdqMfXWHvgOEYGFshEOtq6Fbj88vqnWz2DfOaMLPPmsvllwMwukK0QrwD0yyB7\nK5BzcuS86Gjt79fOGWRA/6XeiCg8sEAmJ+aqtJefD1xwQf3TrZ5B3rtXCrtQltZSV7Ewi9lLvKn0\nyiB7K5APH9YnXgEY/8HHTh1kvsbaA8cxMrBAJtLRzp3ul3JTO8hWnS0farwCML+DbJWIhd4Z5Lqa\nNQPat9dngh5gTgfZ6AKZGWQiYoFMTsxVac9TBzk2VmbM61VAhjqWWhTIZq9iYZUCOSVFdvQLtqj0\nNJZ1d9FzlZqqXweZEYvg8TXWHjiOkYEFMpFOiotlDWRPhYreu6yFwg4dZKtkkJs1A4YOBT78UNvb\n9dRBBqRA1quDzIgFEUUCFsjkxFyVtnbulO5x3WW4VHrmkEMdy927w79AtkoGGQDGjwcWLAjuuoFm\nkAFZNaVnz+Duzxe7d5D1jFjwNdYeOI6RwYDd7Ykik6f8scrKayHboYNslYgFAIwaBdx9t4x3p07a\n3GZJiXwL4c4992hzH+5wmTciigTsIJMTc1Xa8pQ/VulZIIcyloqiTYHcqpUUqVVVod1OsKxUIDdq\nBNx0E/D++4FfN9B1kPXWqpUUkNXVxtwfM8hkNRzHyMACmUgn4dpBPnZMlncLtfiKiZFi48QJbY4r\nUFbJIKvGjwfmz9du5RJvk/T0FB0NNG9u3Liyg0xEZmCBTE7MVWnLVwdZz0l6oYylFt1jlZkxCytl\nkAHZMObUKWDTpsCuF0wGWW9GxizstMwbX2PtgeMYGVggE+lEnaTniVU7yHYqkK3UQY6KAm6/PfjJ\nenWZWSAbOa6lpfaJWBBR+GCBTE7MVWmnvFwKCG9bNXfoABQVyVJwWgtlLFkg6+f224H33gssl221\nDDJg/w4yM8jkDccxMrBAJtLBrl2yQUSUl2dYgwZAQoJsImEldimQrZZBBoCMDBlzLd5fI6FAVhSJ\npdglYkFE4YMFMjkxV6Wd/HzvE/RU6pbTWrNSBvnYMW1uK1BWyyCrAl0T2d1Ynj4txWPjxtodVyCM\nKpDLymQFkBgDFyTVs4PM11h74DhGBhbIRDrwlT9Wdepkvd30du0CunTR5rbM2m5aUYzPrvrr1luB\njz+WIjdYJSVSpHrahEZvRn0zYPQSbwAzyEQkWCCTE3NV2vG3g6zXRL1gx7KiAigs1G4zC7MiFmrn\nsUED4+/blw4dgAEDgE8/9e/y7sbSzHgFIOO6erX+Y2v0Em+ALGFXVqbPOs98jbUHjmNkYIFMpINA\nOshWWsli3z4p4LQqLM0qkM0uIH0ZPx549dXgYwpmP76JE+XbgdRUYOpU2ZpcD2Z0kKOjgaZNpUgm\nosjFApmcmKvSjtkd5GDHUsv8MWBegWzFFSxc3XIL0LOnTNpbsMD75iHuxtLsAjkhAZg7F9i8WXLQ\n/ftLdETrXLIZHWRAv5gFX2PtgeMYGVggE2msogIoKAA6d/Z9Wb0m6QWLBbIxGjUC3nxTssgvvggM\nHgz88ov/1y8utkaHPCkJeO456SAfOwYsWaLt7Ru9xJuKu+kREQtkcmKuSht790rh0LCh78vqNUkv\n2LHUo0A2YxULKy7x5s4llwDr1gE33ABceSWweHH9y3jKIJuxzbQnsbHAsGHAhg3a3q4ZEQtAv6Xe\n+BprDxzHyMACmUhj/uaPASkgKyqs063SukA2axULqy7x5k5MDPDAA8BTTwFffeXfdcyOWLjTp4/2\nBbJZEQt2kImIBTI5MVelDX/zx4As06VHF9kqGeTWraWY02NFAG+sHrFwp3172VmxLitmkN3p3VsK\nZG956kCZ1UFmBpm84ThGBhbIRBoLpIMMWCeHrChy7FoWyDExQLNmxnfjwrFATkgADh3y77JWLJDb\ntZOx3rtXu9s0s4PM3fSIIhsLZHJirkobgXSQAX1WsghmLNUoRFyctsdixkS9cMkgu0pMdN9BtuI6\nyJ5oHbMwM4Osx4c6vsbaA8cxMrBAJtJYoB1ks3fTKy8HXn8d6NcPGDNG+93ZzCiQwymDrAqkg1xc\nbK1JeiqtC2S7LfNGROGDBTI5MVcVuupqWfIqkJiCHh1kf8ayuBh49lk51q++AhYuBObN0/Y4AHNW\nsgjHiEVsLHDunHxgcRUuGWTAXh1kPSIWfI21B45jZGCBTKShggLp7DVr5v91zMggnz0LpKdLHOSb\nb4CPPgIGDtTnvsxYySIcC2SHw3PMoq5IKZC5igURmYUFMjkxVxW6/PzA4hWAORnk48elIJs7F7jw\nQm3vuy5mkP3nLmYRThnkCy6Qbwu02lHPbhuF8DXWHjiOkYEFMlGQvv0WqKysfdrOnYFN0AOA5GTp\nPBu5FJqRHVZmkP3nTwdZUaxbIEdFyXJvGzdqc3t2W+ZNK1oupUdE7rFAJifmqvx34gQwaBBw883A\n6dM1pwfTQW7SRIodf75a95evsTSywDKrQLZLB7nuWJaVyS6N/uzUaAYtYxZ2W+ZNq9fYtDRzJ/ZG\nOr5XRgYWyERByMmRbYIbNwZGjJCCEwiugwzoE7PwJhI6yOFaIPv6oGTV7rFKywLZbsu8aeHkSXmd\nWbbM7CMhsjcWyOTEXJX/1q4FrrgC+Pe/5Svlq68GCguD6yADMlFPyw0WfI2lkUVWfLyxq1hUVQGn\nTplTWIUqMdF3BjlSCmRFMS+DrFfEQovXWPV1ggWyefheGRlYIBMFYe1aWfUhKgp45RXglluAyy8H\nduwIroPcvTuwbZv2x+mJnTvIJ08CzZvL2IQbO3SQe/SQ50FFRWi3U14ONGokuzEazco76e3ZA/Tt\nC3z9df05EESknTB8CyG9MFflH0WRAvmSS+RnhwOYNk3+JSUFt4HDRRcBmzZpd4yRnEEO13gF4H6S\nXt2xtHqB3KSJrK2dm1v/vMJC4NFH/bsds/LHgH4RCy1eY/fuldeelBR5HSLj8b0yMrBAJgrQ7t1A\ngway+oSru+8Gtm8P7ja1LpB9MXIZNKML5HBd4g3wbzc9q+6i58pTzOLll4H/9//8uw2z4hWAFPkV\nFbJxi9Xs2QN07gwMHw58+aXZR0NkXyyQyYm5Kv+4do/rCnab5m7dgAMH6u+iFixfY2nkMmitW0tR\nZ9TSVOG6xBvgPmIRbhlkwH2BfOIEMGeO/NefaEBpqXk5codDinOtYxZaZZBTUlggm4nvlZGBBTJR\ngLwVyMFq0ECK5K1btb1dT4zssjZsKKt9GJXpDOeIRYsWsh72qVOeLxOuBfJbbwEjR/q/9biZHWTA\nujlktYN8+eUyb8HobdyJIgULZHJirso/6gQ9rWkZs/A1lkZ3WY1cySKcC2SHo34XOdwyyICs7LJh\nQ823BmfPAn//u+SP27YFDh/2fRtmLfGm0iOHrFUGOSVFPnhedRWwYkXIN0kB4ntlZGCBTBSAs2el\niO3XT/vbNjKHbHRO18gccjhnkAHfu+mFQ4Hctq2sJKIuSbZggRTNvXvLeUeO+L4NMyfpAdbcTa+8\nXD4AJiTIz4xZEOmHBTI5MVfl28aNsoxb8+ba37aWBbKVMsiAsQVyOGeQgfoT9eqOZThM0gNqYhbV\n1cALLwCPPSant2vnX4FshQ6y1TLI+/bJpkLqEoZqgcytp43F98rIYMIKk0ThS4/8sUotkBUl+Ml+\n/jK6C2l0gRwfb8x96cHXWsjHj4dHgdy3L/DzzzUT3tRvpf2NWJjdQbbibnpq/liVmiprRW/ZAvTq\nZdphEdkSO8jkxFyVb3rljwEpjKKjZa3YUPmTQbZrxCKcM8hA/d306o7lzp2yzrDVqR3k55+X7rH6\noS+cOshWyyCr+WOVw8GYhRn4XhkZWCATBWDNGv06yA6HdIH0ziFXVQFlZcZ255hB9p+3DnJZGXD0\nqGxNbnV9+gDLl0uxP3Zszenh0kHWY5m3UNXtIAOeC+TFi4E33jDksIhsiQUyOTFX5d3Ro9L5Sk/X\n7z60yiF7G0u18DByK2ajV7EI9wyya4HsOpZ5efK1enS08ccVqC5dZPnCRx6pfbz+TtKzwjJvWneQ\nQ32NrdtBBoDBg+WDu+sa6q+9BvzmNyyQ9cL3ysjAApnITzk5QP/++hYnRqxkYcYqCIxY+K9uxMLV\njh2yXnY4iIoCliyRQs1VJEcsQuWugxwbK3nvlStl/sK0acDrrwPr1klBbbUuOFG4YIFMTsxVebdm\njX75Y5VWBbK3sTSjgGSB7D9v6yBv3x4+BTIAXHONTCJzFU4RC6tnkFXDhwNLlwJ33gl8/TWwahWQ\nliavJ+vXh3SX5AbfKyMDC2QiP+m5goUqI0O+Rq+o0O8+7N5BDvcMstpBdrd0144dQPfuxh+TlgKJ\nWJjdQbZS9/XsWYl5dehQ/7zhwyVOceQI8NVXQJs2cnpmpnzzRUSBY4FMTsxVeVZdLW80ehfITZrI\nV6jbt4d2O97GMhI6yOGcQW7eXCZsqttNu45luHWQ3YmLk85sZaX3y5ndQbZaBnn/fiApyX3E6+KL\ngffeAz7+GGjWrOb0AQMkakHa4ntlZGCBTOSHvDwpKtUdrPSkdw7ZjA5yfLwxBfK5c9Jpcy0SwlHd\nzUIA6SjboYMcHS3rOB896v1yVuggWymD7C5/rIqKArKyZFKkKxbIRMFjgUxOzFV5ZkT+WKVFgWy1\nDHLr1lIg673jV2mpFDZ6b7SiN9ftptWxPHJEistw3gRF5U/MwuwOsh7LvIXyGrtnj/v8sTdpafKB\n2J9IC/mP75WRgQUykR+MyB+r7NhBbtQIaNiwJjagFzMemx7crYW8fXv4d49VvlayUBRrLPNWUmKd\nbZz37vXcQfYkKgro149dZKJgsEAmJ+aqPNu+HejRw5j70qJAtloGGTAmhxzuK1ioXJd6U8cynJZ4\n88XXShbl5fKBqm5kwEgdOkiRPHmyRHe0EMprbDAdZEAm6rFA1hbfKyMDC2QiP+zbF3j3JlidO0un\nVa+NNczqsrJA9p+nDrKdCmRvHWSzu8eAfOuxahVQUAAMHeo7M603T0u8+TJgAFeysKriYll9xEqr\npVANFsjkxFyVe9XVMoPcqO19HQ6gZ09g8+bgb8NqGWTAmAI53Jd4U7lO0lPH0g4T9FS+IhZmT9BT\nxcbKyhADB0rEauvW0G4v1AxyMB/S1Yl6VomK2IFW75X/+Q/wzDOyO+bzz8tW8mQdfhXIVVVV6Nu3\nL66//noAwPHjxzF06FB069YNw4YNQ0lJifOyM2bMQFpaGtLT07F8+XLn6evXr0evXr2QlpaGqVOn\navwwiPRz5Ih0s5o2Ne4+9cwhm9VBNmIli3Bf4k3lOklPFUkRC7Mn6LmKjgZmzgSmTwcGDQJWrDD+\nGM6dk7+H5OTAr5ucLFnkffu0Py4KzbJlwAsvAN98A/z4oxTKL78MnD5t9pER4GeB/MorryAjIwOO\n81PDZ86ciaFDh2LHjh0YMmQIZs6cCQDIzc3FBx98gNzcXCxbtgxTpkyBcv5j6+TJkzFnzhzk5eUh\nLy8Py5Yt0+khUbCYq3Jv3z6gUydj7zPUAtnbWJrVZY2L0y82orJjxCI7OxuVlcCuXfIGagfh0kF2\ndccdwCuvSKcvWMG+xh44IH8TwWSyHQ4u96Y1Ld4rKypk18Nhw2SDqEWLpGBeuhR48MHQj5FC57NA\nPnDgAD7//HPcfffdzmL3k08+wcSJEwEAEydOxMcffwwAWLJkCbKystCgQQOkpKQgNTUVa9euRWFh\nIU6ePInMzEwAwIQJE5zXIbK6cCyQvTGry8oMsv9cJ+kBkj9NTJSNZOzAVwbZSh1kV9dcI50+o+MK\nweaPVSyQrWf1almGr127mtN69wYeekg+EJH5fBbIDz30EF544QVERdVctKioCAnnd0xISEhA0flW\nx8GDB5Hs8h1QcnIyCgoK6p2elJSEgoICzR4EaYMZZPfMKJB79gRyc4GqquCu720szewgM4PsH7WD\nrCgylnbKHwO+IxZW7CADQPv2ErXavTu46wf7Ghts/ljFLae1pcV75RdfACNG1D+9ZUt5HSPzxXg7\n87PPPkO7du3Qt29fj18pOBwOZ/RCK5MmTULK+Y/LrVq1Qp8+fZx/kOpx8Gf+bNTPq1YBl15q/P23\nagX85z/ZSEzU7va/+SYbxcVAy5bGP564OODrr7ORna3f/W3bln1+K17jH5/WP0dHA0uXZqN5c2D7\n9kHo1s1axxfKzz17DsKRI57PP35c/v6tcryuP6ekAOvWDULXrsbd/969g5CSEvz1+/cfhPXr5fkX\nFWWt32ek/rxsGXD33fVfD3ftAk6cMP/47Przhg0bnPPm9uzZA68UL/74xz8qycnJSkpKipKYmKg0\nbdpUGT9+vNK9e3elsLBQURRFOXjwoNK9e3dFURRlxowZyowZM5zXHz58uLJmzRqlsLBQSU9Pd57+\n3nvvKffdd5/b+/RxSKSjb775xuxDsKQbblCURYuMv99LLlGU778P7rqexrKsTFEaNQr+mEKxeLGi\n/PrX+t7HjTeaM1Z6uOACRdm+XcZy8mRFefVVs49IO1VVihIToyjnzrk//4EHFGXWLGOPyV/PPKMo\njzwS3HWDfY2dNElR3n47uPtUdemiKLm5od0GiVDfKwsKFKV1a/d///v2KUpSUkg3TwHwVnNGeSue\n//a3v2H//v3YvXs3Fi5ciMGDB2P+/PkYPXo05s2bBwCYN28exowZAwAYPXo0Fi5ciIqKCuzevRt5\neXnIzMxEYmIiYmNjsXbtWiiKgvnz5zuvQ2R1Rq6B7Co5WdZg1ZKZqzwYtYqFHSIWQO2JenbaRQ+Q\nVRVat/a8tnBenuQzrWjAAMkhGynUDDLAHLKVfPklcO21QIyb7/BbtpTXMTKf14hFXWqU4oknnsC4\nceMwZ84cpKSkYNGiRQCAjIwMjBs3DhkZGYiJicHs2bOd15k9ezYmTZqE06dPY9SoURjhLnxDplK/\nhqDazMggA1IgBztZw9NYmpnRjYuTlRjmzpWls2Ji5L+XXabdGtN2ySADNRP1br55EO64wz5LvKnU\nlSwSE+ufZ+UCuV8/YP16WR89ymuLqb5gX2NDzSADNQXyhAmh3Q6F/l65bBkwcqT785o3l50kKyvd\nF9BkHMf5FrNlOBwOWOyQKIKdPi2drvLywN8MQzVrFnDwIPDSS9rd5po1wNSpwNq12t2mv06fBh55\nRH6XVVXyBnD8uOwmtWaNLEfljqIA990H/PWv0lX1pls34NNP7dFtnTJFln+6806Z1HbqlPF/g3q6\n5hrgySeBwYNrn37unBQJpaWym50Vde0KfP45kJ6u/31VVcnEwFB/H99+Czz2mDzXyDyVlfLhcMsW\n2c7cndatgZ07palA+vJWc9ro5ZZCpQbaqcb+/TUL7RstlA6yp7E0s8PapIlsqzp3LvDuu8B778ma\nn8ePy5a+nqxcCbz9NrBxo+/7sFvE4tAh4P33s3HBBfYqjgHPK1ns2SOFg1WLYyD4uEIwr7EHD0o8\nKdTfx8UXy9KRFRWh3Q6F9l6ZkyPfmHkqjgGJwXElC/PZ7CWXwt3atfLVpVWYFa8AgKQk7dfDtNpO\nc9HRwB/+IN1yT55/Xo55717ft2enAlndTW//fnt0xOvytFmIleMVqv79jcsha5E/BqQr37VraFvY\nU+i8xStUzCFbAwtkctIqg7x1K/Dcc4Ff7/nngYEDgQ0bNDkMTZhZIPszSe/0afdbyFoxg+zJxInA\nDz/IRLS6Nm0Cfv5Z4ga+VuQ5c0Y+XDVurMthGk7tIMfEDLJd/hjwvFlIXp71dwwMdqKeP6+xdb/t\n1SJ/rLLjRD0zEpmhvFd6Wv/YFTvI1sACmTS3Zg3w4ov+v3ApCvDUU/LV+4AB2q/cEAozC+QOHYDC\nQu+bhSxaJJlif1mtgwxIvnLyZODll+ufN2sW8MADkvX0VSAXF0t2T+Nl2U2jdpB37LDfBD3Ac8Qi\nHDrIF18skZ/KSm1v94UXZNyzsoB//Us2JNGqgwzIhNiVK7W5LSvYu1deG86cMftI/HP4sDyfL7vM\n++XYQbYGFsjkpFUG+cAB6Qxt3er7sooCPPywTKz69lugTx9rFch795pXIDdqJAWftx3Hdu1y34Wz\nYgbZm9/9Dvjgg9qPdd8+4LPPpHju3Nl3gbx7t3aFhBWoy7z9+GM2IxYWExsrOdLc3MCu5+s1duNG\n4P0GCVsAACAASURBVMEHgaFDgW++AS69FPjLX4AuXYI/VlejRskSY1oX9mZ57DEpOHfuNPZ+g32v\nXL5cJqU2bOj9cuwgWwMLZNLc/v3SFfz6a++Xq6qS1QlWr5Y3g7ZtJXdrpQLZzA4y4Hui3u7dwLFj\n/t+eFTvIgBRLN98MzJ5dc9rf/w785jdyvCkpvjPI+fnABRfoepiGUiMW+/ezg2xF/ftrH1fYtQu4\n8kr5u//3v+UbpI0bgTvu0Ob2k5Lkw+bq1drcnplWrpRvK4cMkb+ZcLBsme94BcAOslWwQCYnrTLI\nBw4AY8dK0evNww9LUfO//9UUbVYskM3YJETla6KepwI5nDLIqj/8QQrk8nKJS7zzjnTTAImbHDkC\nnD3r+fo7d1o/uxqIpk3lW4TGjQchPt7so9Geuw5yRYU8/7XqmOopmIl6vl5jd+2SiXQqh0MiBE2a\nBH58nlx3nXwzE86qqiRa9vzzwEUXGV8gB/NeWV0tHeThw31flh1ka2CBTJo7cEAWo1+50nN+9uxZ\nKYDef19mV6usVCBXV0v3TqtNLILha6KeWiD7u/KHVTvIgBQCAwfKEnD/+AcwerQ8fkAWzE9KkvHw\nZOdOe3WQAeki27F7DLifpLdrl4y5r6+grUDrHfXKyuT56W7jFC396leyvGI4+9e/JOYybpw8P3bs\nMPuIfMvNBVq08C8Gxg6yNbBAJietMsj790t3JTHR84oUX30F9OpVf+MHKxXIR47IC1rTpuYdg7eI\nxdmzcoxNm9Z/MQ23DLLqkUdkgudrrwGPPlr7PF85ZDsWyImJQGxsttmHoYu4OPm7PXeu5rRwiVcA\nMl8iN9f7txp1eXuN3b1bOud6r3c9YIBEW3xl+q2quFgmdb/yinTY09KM7yAH8165ciVw9dX+XZYd\nZGtggUyaKi2VCSCtWslkBE855I8+Am64of7pViqQzc4fA94L5H375PfVtq3/OWQrd5AByV+2bi0f\nsHr0qH1eSkrkFcgJCeZ+g6GnqCjZAMP1bzc/P3wK5KZNJdKj1brCdeMVeomOlnV4w7WL/Je/AGPG\nAH37ys9mFMjBCKRAtn0H+dw54NlnLT9blAUyOWmRQS4okDd0h8NzgVxVBXzyifsCOS5OluwpLw/5\nUEJm9QJZXbWhbpEBhGcGGZC/m/nza0/WU3mbqFdaKl9R6/31tNGmTAEee2yQ2Yehm7oxi3DqIAOB\n55C9vcYa+QHvuuvCs0D+5RdgwQLgmWdqTktOlq7yqVPGHUeg75WKwg5yLR98APz5z1AqvaxhagEs\nkElT6tbMgLwYrFpV+ytUQDaFaN/e/UQch0MmZB08qP+x+mKFAtnbJD31K1l3BbInJSXW7iADsmuc\nu66ptw6yWlzYZQ1k1eDB4VUwBqruShbhViBrufGGUR1kABg2DPjuO/lQGU7+8hfg8cfl70YVFSXP\n/fx8847Ll+3bZQMjf5ehtHUHWVFQOeN5jMAXuO3ORoZ+sAkUC2Ry0iKDfOBATYEcHy9fQdZ9A/no\nI/mKzJMOHawRs7BKgVxQ4H7TlT17PBfI7sayslI68y1a6HKouvOWQbZjvEKl1dwAK6q7kkW4FciB\ndpC9jaWRBXKrVnLsvpbitJoff5Tud11GxywCfU4G0j0GbN5B/uILnDkbhWP9hqNpU/mQGeh64kZh\ngUyaOnCgdvfvmmtqvwgriuf8scoqOWQrFMjNm0vn4fjx+uepHeQ2bfzrIJeWSnGs9yQgvfjTQabw\n4hqxOHNG1n0Op81eevWSzqUWkTAjC2Qg/GIWZ87I+4u7pRytvpLFypVAIKkMW3eQn3sO31/2GDIv\ncWDOHJmMffXVwMKFZh9YfWH6Vkl60CKD7BqxAOrnkDdulK/BL7rI821YpUA2cxc9V55yyIFmkK0+\nQc+X5GT5Or6iov55di6QtVqf3IpcIxa7dsnzLSbG3GMKRKNGQEaG59V66vI0ltXVNd8IGUVd7s3d\nt1NWtGOHfIBo0KD+eUZ3kAN5TgaaPwakQC4pCZ+x8duhQ0B5OT6MHuesAX7zG9kL4c9/Bp54wtzD\nq4sFMmnKNWIByKoE69bJp3+gpnvsLStqlQLZ7E1CVN4K5EAyyFafoOdLTIxk1939LvLz7bVJSKRw\njViEW7xC1b+/5HlDUVgoH16NXFKye3dZb3rTJuPuMxS5ufJhxB0rr2SRny/vd4F8O9CokbzenT6t\n33GZIjERyMnBhi0xtZpkffL/i3XZZfjkE/cTtM3CApmctMogu0YsYmOBnj1rtjb1Fa8ArFEgnz4t\nkYR27cw9DsD9RL2yMuDkSXm98TeDHO4dZMBzDtnOHWQ7Z5BdIxbhWiD/9reydre3TWxUnsbS6HgF\nIEXbr34VPrvqeSuQjY5YBPKcVLvHgU4gtmsOuaragdxcqQuc/vMftP736/j0U5mIuWKFaYdXCwtk\n0lTdiAVQE7PYuRMoKgIuvdT7bVihQFYfhxXyuu5209uzR4pFd2vJehLuHWTAfQ757Fn55s4KcRgK\nTLt2NRGLcC2Qe/cGHnoIuPNO/3e0rMuMAhkIrxyytwI5IUG+pbRiQRlovEJl1xxyfr40dmpNFp8+\nHXjxRVzQthQLFwK3326NTLkF3v7JKkLNOp48KfnQ1q1rn64WyB9/LNsHR0d7vx0rFMhWmKCnchex\nUOMVQORkkAH3ayHv2SPfWoRTdjUQds8gh3sHGZCJRuXlwBtveL+cp7HcudOcAvnqq4GtW4GjR42/\n70B5K5CN3lHP3+dkMPljlZpDtptNm9zMQbrwQmD4cODZZzHoagXPPANcf72sb20mFsikGddNQlxd\ndplMzvv3v33HKwBZ5u3QoeC7MVoIhwJZne0f6R3k/Hz7xivszi4FckwMMG+efD28bVvg1zerg9yo\nkaw0tHy58fcdiIoKec3r1s3zZay4ksWePXLs3o67nh07gG+/RatW9uwguy2QAeBvfwM+/xy45Rbc\nM+4ERo4Exo2rv4+CkVggk1OoWUd38QoAaNJEJrLk5wNDhvi+nUaNJLvsuj6q0axeILvOeI/0DPLO\nnfaeoGfnDHJcnGT9S0vl+W6V51ww0tKkQJ4wwfMOulbKIKt695aNLKwsP1/+Nho18nwZIzvI/j4n\nA84fr1gh4dz337dPB7mkRL5GPl/peiyQO3aUGf29egExMZg1S75tfu45Yw/XFQtk0kzdFSxcXXut\nTAjx9gLnyuzd9KxeILtGLJo1kzdkdaUQT+zaQbbzBD27i4qSIjknR/6efcWvrO63v5XHM2NGYNfb\ntcu8v+FOnTxv4W4V3uIVKiuuZBHQ+sdvvQWMHy9F8j/+YZ8O8ptvypvY+fX5PBbIgCz6/+STQLNm\niImRZd/MnETKAjlMVFbqvxxPqFnHuitYuHr0UXn++8vsHLKVCuSWLYGqKumyqVwLZIejfhfZrhnk\n5GSJ37h26OxeINs5gwxIzGLVqvCNV7hyOIA5c4BXX5XnaF3uxrKsTJ6biYn6H587nTvbo0A2MmLh\n73PSr/xxVZXM8nz5ZeD774GrrgJgk0l6Z84Ar7wiBQDk8Rw54v+3JZmZwObN2mzEEwwWyGFiyRIg\nK8vso/DOU8QCkM5xIFscs0Cu4XDUX8nCNYMM+JdDtkMHuWFDmbHu2lG3e4Fsd+3aAT/8YI8CGZDX\nrv79gV9+8e/y6odds1bMsUuBrHaQrbK5xv79wKlTMv/Mq5IS+bd6da2smC2WeXv3XeDiiyU2AWDL\nFqBHD/+/KWraVK6ak6PjMXrBAjlMfPSR/jONQ806eotYBMrMArm6Wl7crFIgA7VjFiUl0nSIj685\nPz6+9t+HXTPIQO0cclWVFBhm5TeNYOcMMiAd5DVr7FMgAxIRc/f65W4szcwfA/KtX0GBPJesyp8C\nOT5ePmQYsSKHP8/JlSulGewzfxwfD8ydW2/5p7DvIFdVAS+8ADz+uPMkr/EKD7dxd4fP8f332h+e\nP1ggh4GKCpncWVxsnU/H7niLWATKzAL5yBGgeXNjd7XyxbVAVjtOri+8kdJBBmrnkAsK5LFbaawo\nMG3bSnzITgVyUpL/cyjMLpAbN5bcdGGhecfgTWWldIa7d/d9WSutZBHs8m4qZwd5xYrw3FJv3z5g\nwADZTve8gAvkqChM/DILm742Zx1CFshh4Jtv5MWhcWNZa1gvoWYdvUUsAmVmgWyleIXKXYHsKlIy\nyEDttZAjIV5h9wyyululnQpkTx1kd2Np1hrIrqwcs9i1S36f/nwINmqinj/PyR9/BAYODP4+nB3k\nN98EZs0K/obM0qUL8N57tTo5ARfIDgdwYQZK1/5iyjccLJDDwEcfAWPHyqd8f9a7NcOpU7KjWVyc\nNrfHArk2199H3fwxELkd5EgokO2ubVv58K/Vh2srCGQVHrM7yICFC+TKSuT/cBgDU4/KC5yPzIGV\nVrIoLgbatHFzxqlTfn0V7Owgz5oF/P3v/u1lbmHV1TLh7nwc2W8NemcgM/YXbN6sz3F5wwLZZIoC\n/Pe/nsP4VVUyQe+GG/zfECJYoWQdCwrkDS7Q/eY9YYFcW6Ad5LpjqSjy3mKHAtk1gxwJBXIkZJAv\nuMAa27prxVPEwooZZMDCBfKePRj0ux7453fpkp9o395rN9WoiIU/z8nSUjevt1VVwK9/DSxY4PP6\nzg5ySoqsH/j008EcqmXs3SuPKeAmWkYGrorPNSWHbKOXpPBTXQ08+CBw222eF8Nes0beQFJTpQg6\nftzYY/SXlvEKQB5rebk50au9e61dILtuEqLy9eHp9GkpQBo31u0QDePaQc7Pt/cmIZFg4EDg4YfN\nPgpteYpY1FVd7f75bDTLFsipqbj3hiP47z/Od5C3bQOef16WQ3DDKh1kRZECud7KTU89JV2k227z\neRu1VrF47DFZEDg3V/NjNUrA8QpVRgYywAI5opw9K8u2bdggWaV//tP97NuPPqrZnlnvDnIoWUct\nV7AA5DXE3zcZrZm5aL8noWaQ7ZI/BmQi6MGDMnknEjrIds8gJycDd95p9lFoq107+Yq97ja5dcey\nsFC6as2aGXds7nTuLN+cmcrD9oO1VrDo1An49luPS1qkpcmHZr0ns/t6TpaXy5KU5/fGEDt3ymYA\n77/v1zpntVaxaNlS1hJ+6aWgj9kwHn75QRfIF12EJpf3xXffGb9IAQtkE5w4AYwYId2DL7+UP5qb\nb67/t68owOLFNQWylTPIWq5goTKzQDb7K8+62rSRCZqnT0vHqW4GuU0b738bdskfA7Kmdtu28rcR\nCQUyhZ/oaCmSDx3yfjmrvNaY3kFesUKWfKhTAVVVyTbY6ekuJ6ane8zjxMbKCkT+5L/37QOKikI4\nZi/cxtlmzZKoRNu2ft1GixayiYxzctr99wOvvabpcWruyBEpaNx82Nm4McgCOSkJrd58DtXVxv+N\nskA22MGDsjZiz57AwoU1X3n/8Y/y4dK1yFF3zuvdW/5r5Qyy1hELILClkrSiKO47tGaLipIPDD//\nLH8zsbG1z/eVQS4psU8HGZA39PXra7YqtjO7Z5Dtyt0H/Lpj6XeBXFkpu6k8/TTwwAOaHaNK3W7a\nlGVET5wAfvMbYPr0epNY9u6VD/+BbDLlT8zil19kBbJbbw3uMft6TpaW1nmNLioCPvggoLGLipLH\n7dxBtXFjoEmTgI/VUHPnAv36ATEx9c4KuoMM+bO44goYHrNggWywhx+W7vGrr9b+lqVzZ+DGG2t3\nkdV4hfqaoXeBHAqtIxaAORP1iork685AXpCNkpwsLxDuindffxt2maCnSkmRphPzx2RV/nzA9xnn\nqqqSr9bbtgUmT5avkMaOdX/ZEHaVaNlSahpT5rg8+qi8KQ4dWu8sfzYIqatbN+8F8vbtwLXXAjNn\nSgxm0aIAj9cP9SboxcXJZgbqmoZ+Cqvd9KqrZUm6KVPqnVVWJk20bt2Cv3kWyBFgyxb51OputYdp\n0+TvSy10Fi+u/Vqo9yS9UDPIWkcszCiQrfKVpzvJycB337kvkFu3lvdH9eu4umNptw5ySgrw9deR\nEa+wewbZrtx1kOuOpc/Xm/vvl0kqW7bId9TPPw94+nt44AHgnXeCPl5TYhbLl0vO0MPKFH4VyIcP\n1/pKPy3N80oWeXlSHD/zjOTeX38deOQRWXktEL6ekydO1OkgN2gQ1KLIYbWb3pdfyhvRgAH1ztq6\nVZIxtTLZAWKBbHNVVTKBwNOnqJQUKYhfflmylYcPA5deWnO+lTPIekUsWCDXSE4GVq1yXyBHR8sL\nsqdugx07yNu3R0aBTD7s2AGMHCmVz6BBwD33yB+HyfxZC9nnJiH33w988YW8GPryxz8CTzwhhUoQ\nDC+Qz54F7r1XZqjXzYyd51eB/JvfyFf753mKWOTnA0OGSJJDnRR6xRXyJ/Pss0E9Ao/qRSyCFFYd\n5H/8Q77lcNP9CyVeoerdW3LjRn7LwQLZQHv3yjdl3mYsT5smf2dz5shyia5zEayaQS4rk2/+4uO1\nPR4WyLUlJ8tXgnUn6Klc/z4iIYMMREaBzAyyD+3aSSH5+ONS/XTqJNvbzphh6mG5i1gEnEG+8EL/\n12ZMTwc+/BAYPx746aeAjhUwoUBu1Aj49FNg+HCPF8nNlV+BV9OnSzb7/Daz3bpJp/Guu6T+njJF\n/jyGDAH+/Gc53dXzzwP/+ldg6yf7ek5q1ZDw2EE+cgT41a88rvxhuHPnpAOYleX27JAL5NOnEfPm\n67jkEoniG4UFsoG2b/e9n3yXLpI7njmzftTMqhlkrTcJUbFArk1tInmaQOjt78OOHWQgMgpkv6nL\n4vzpT1Ig9u4tn7Ifesik2VcaW7myZq1DV61aAaNGSYZ10CDgySfliezHWrN68rUKT1mZPC/bt9fw\nTi+/XGZ7X399zWLhfjIlYuFlWzVFkcl0Pgvk/v2l+n3+eQBAjx6y2MNll8lZPXtKV/nNN6Vgrqt9\ne2m+P/CAdk8T3TvIbdpIK/WLL0K/Ey00aAAsXeqx+xdygdygAfDoo7gms8zQmAULZAPVW67Gg2nT\ngD59gGuuqX26VTPIesQrAHmDKSyU932j+PzK00Tq79ifArnuWB4/bq8OsrqRS1CT9H76Sd5Y9Frj\nSWN+Py8dDimOoqJkQ4K5c4GJE6WlpvWnV6PNmiWdUX+3223evOZrBpO46yC7jmVeXp0dBLWqzsaO\nlajFnDkBXc30pd7q2L9fJku3bu3Hhf/2N2D2bODAAURFSSPTtYP8wAOSwvHk/vvl6/tPPvHv2Hw9\nJ0tLgVax1cC777qs0xY4jx1kh0PWhvX3gE1UXS3xeXU1rqDExADduuHajtsNLZDrr8VButm+XT7d\n+tK1q/tvyFq2lG+RKivdrqJiGj1WsADkm8UWLWQDlQAn/wbNyh1k9Xfs6X3fWwc5Px8YMwbyJnzw\noLxquZtVuX+/nNepk6WLqsaN5dvZDh3cnHn2rEz+OXNG3kTqKikBXnxRnmRNmgB9+8oEmjvv9C/r\naVUOh8zsdXXxxZ4vv3OnPH63v0SLUBSJTnz2GbB6degvNIpi2N+1rwxyvW8Uf/c7yVF7WqUiEPff\nH3DBbbUCOaAVLDp2lDWG//znoCYqNmggXee77waGDQt9NbUTJ4Arjn8GfP4KcMcdQd9Oy5ZeMsij\nR8sWvNXVlt6nPS9PHkfI7+H/v707j6uqzv8H/rogSpSyKaCgogIKZpmaWm6US64tlpZTubSO/cxm\nGsvGaSZrpnRymikrbPmaY1ONlZbaZmqCSyka5rjgviUIiooKKrKd3x9vD1wud4Vz77nn8Ho+Hj6K\nu34uH+697/M+78/7k5KC6xplY9u2bigp8c2usP77W/UXiiJ/ofv3yxfq2rWOM0+7d8u5hBMn7NYG\n7dnjusTCmYAAyQIWFtb9MZzJWLNGxr51q3whvfee9KOzp7RUbrN5M87v/BVt4ryT5vVamcWFC0Bm\nJvD++7Lf97hxqBg4GBUFZ+zHSE89JUufV6yQ+i8dtGoFLFzo+MM7MrJ6N8aqGrmyMiAjA3dvegap\nMwfIjW64AVi82P6DrFolwWLLlvIB/Le/SdGXL9P4bho50ibW2bpVFuy0bAnMmeO4Pu/WW6VH3OnT\nsurx4YdlR4fNm30ybk/Vqnc8dKh2IFwX69bJKe433/TPEozycpmbdeukfYsWR+Fjx8pOZj4QFiYf\nkxcuVF9mPZd791ot2F64EPjhBwmQteLhgYChA2RADqSefrrOzzdwoJRzLFni+rbu9EHu9eNrMqZ6\nHJCFhTnpYtGhg3yeb9lS58f3hc2bgZ49NXig5GQEH8pGSoo0dvEFP8pDWqmocGsrRk2UlMiXf0hI\n7euefloCKItFDn+aNpXCopkzgejo2rf/5BNpXnzypESx4eES4c2dC/Tr51YNsitqltDNzXjcd+6c\nLJYIC5NILDZW/usoXVlUJKsJT57Eg9m5CKkoAtI7S+3jnDmaDUut47vhBs0eUvTpI0cc118vRWq9\neiH3YnM0Pxpi/0/vxhvl4OfVVyUQa9ZM3vWffCJ7ivpAQAAwfrzj6+1mkL/7DuUvvITC0pFo8tc/\nA9d1sf+3q3roIcmk5uTIJ1tmpnQFmDEDuP9+TV6H5kpKpOZyzx7JnO3Y4V4m2GKRYub4+OrtKv1Z\nRQXw+uuy+OxPf6r/402aJLsW3XsvkJ4up+TdOp/tI59+KinYH37Qbi/mv/xFzrWfPSsr7r3IYqnO\nIicm1r5+374r8fD27dJrLD1dm8LVOoqKkmD+wgUvbn39yivyneLGZ8m2bfJ14rZmzerdKqF3bwnM\n6yvo+FFE5u+6ctqu7kJDJe/m0O23y8Fjr171eh5v0ixATkkBPvoIffpIXqNvXw0e0xXFzwBQlKAg\nRWnbVlH69lWU++5TlG++sX/jc+cU5dQpRbl0SVFKSxXl4kW57NIl+7dfsUJRpk5VlDvvVJTu3RWl\nRQtFadxYUf79b/u3z89XlLNn6/ZCysvl/lu2KEpBgXLunKKEhChKRYXVbZ5+WlEeflhR/v53Rfny\nS0XZtUtRSkqcPuxNNynKhg1ujqGkRFF271aU5csVZfZsRXngAXndjp7D0e/NhREjFOXbj88oyrp1\nivLFF/ZvVFioKDt32vwCXHv4YUV5910PB1RaqigbN8rvddcu+7eprKx10ddfK8ptt7nx+BUVirJ/\nv6IsXerhwLzo0iUlLU1RHnus9lU//aQoPXrU47ErKz2eN5/77jtFuXxZ+8ctKlKUH37Q/nE9lZ2t\nKL17K8qAAYpy4IC2j11SIp+L8fGKkpmp7WPXR2WlvJe1dvCgorRvryjz5mn/2Db69VOU9HT71/Xo\noSiZK88qSkKConz0kdfH4o7ERPlT84qCAkWJiJDfvxvatFGUPXu8NBYHPvtMwoP6ej/pVeXoMDsf\nxnUYz913O7mBN94fnvjHPxRl8WKnN+nZU1HWrtXguY4dU5QFC5SPPlKUe+7R4PGucBYG+2cGuahI\n0obHjsk/R8t8X39dmgZfuCBZ4EaNpJjo5Zftb+lYUSHZon79pMaydWvJpjmq33GWaXMlMFDuf+Ux\n9m6R02k1nmrMGKle37dPjgL37ZNzXD//LFlNW2vXYkj5BTRaZQGKA+TBSktlNZ+9DHjHjvL7SEiQ\no69bb5Xfi6PsfB2LenJygJjkcOAGJ4f7u3bJgqGCAsnG9uol/3r0cFoD6XaJxdatUpS6bp0csnbo\ngNOd+6PJLRZcY+/2dk57udzVShUQIL9TRyvENm+WRUV33imr6721Ou7MGVk5vGQJ8NNPaPHPX3H6\ndO05rMtuVDVYLPZPE166JBm5Rx+t3xZJWhg61DuPe+SIFCZ26SJzai8V6G2ffir1qS+9JHWWWtcb\nNmkCvPGGfI7s2qVRukcDFkv9dhZwpH17qVHv10/SplrU/DrgaDc9RZESi+sW/kGKXr19dmbvXimV\nUhsAO6CWWbjsHFEXc+bId54bizyOHpWlBL7+WElOdpGxdVPf3EU4P8X+5ieecFqDDHjn/eGJ9PTa\nffOsXL4sJ/ScLYVwW1wcMHEieuyVRjW+4J8BcpMm8iZy9Ub6y1/kn7uGD5d/OrBbXtG7d+3ddcrK\nHH8Bfvgh7jqeh+ZLKoGNSvVBQdeu9gPkQ4c8+jLNyMioUycLt7pY9OkjK8UKCqpP3b/9trz+F1+s\nffudO4EdO9D7TDPsPBgCLDsvZSsdO9bcPUW1dy9w8aKUxfTpA4SFYdTNwOQ9wIO1N/axS7MFeomJ\nErAtWiQBTbdu0n5q9Oj6d0sHZBHKf/4jtWcDB8rjLlyI8J+Da/RBVufSrVZJdVFWJuUlffvKQc9j\nj8n7yxsf2vn5UitbWenb/rbXXitHGG+8IX93EyfKQiAftgTJUBSk/vyz4wbYWqnn6WBD6dBBDi7n\nz/dqgGy7UE99X544IW+d4Dl/lR2gvC0kROphu3Z1Wq/mtTrk/HwpV9y+3a2br10r1T++XiecmCjH\nxKWlzivnXH1Xzm7+Gqb196Q+xD6nNcj+YOtW+R53YPt2ySNdYzdLVTeJiVJKePq09nsv2OIiPR9x\nt8UbgoIcZ3jnz8fCsd9i0cQV0u901Srnuyz5YGXrxo3yQdK8uZt3aNECGDFCsmHff28/OAak586y\nZei+KQ23bXpRvsgyMuSD1p5x42RF74gRQFgYLl8GsrI8W+CnWYAcHi61vMuXy7fj9OlSJ+uouO3k\nSfkUvHxZ/pufL5/S58/bv31pqdTa5udLzfv48UBoqMMuFvXOIDvSrJmcrTl6VDJD//iHnJVZuFCb\nx6+oAL79Frj7bnnznD0r2VxfCw6WOdy5U+anUyfftoiLifF+cKy3bds87ttbbzfcIHsNe5GjXshV\nCZOWLSUh5G2tW0vnlvHj5XPGAa8FyLNmyXO7udBy3ToJkOusqEjSjB4uPm3SRE4uHzxYj+cG8ENF\nKpqF138dlcsMsp7y8uRvSe25acfmzdqXRwcEyFs3K0vbx7X7XN5/CgLc2yTEHd7cLMTT7HFp80F1\nZgAAIABJREFUqcQrb7zhhSP94cOBRYtw/P1v8EBchgSb//43/tf+LkydCjzzjPO7b9sm43O11as1\nr7R4u+YaWRQ0ezZw3332b/P663KQ07SpfNhcf71knFessH/7xx6TbJ/NWQNHfZC9FiCrrrpKMqvr\n18s3W/fu9X/M0lJJFbz4oiwePXpUMhV67gwSEyNZsJ9+ql/5lSOKImdBbNS1P7lmvP0NvWKFlBns\n2uXd59GBbYmFOpf79ulQlfTAA/KecnLW1SsBsqLI2abnnnP7LmvXAgMG1OM5r74aWLq0Tttud+rk\nuszC1XtSq42Z/DqDvHWrfNY7+fLXbIGejR49fBMg+2eJhQnVt8WbKiLC/V753jZ7tsQr9lrNaiU2\nVl5vWpokkQsKpFwvLU0WRDs6m79xo5QXuptBVhQJkB1twuFVr7wi/+pJDZCtW71euCAJap+9Lmff\n+tOmScYhNFS+wEJC5L/33FO7ZKFxY/mWtNerWW9aH0VVVADLlkmG78Yb5YDJX5SWyph++1vZkU/L\ns1KVlXIGYt48qaP3qGWBMbjMIPuSupHMdddJ94M+fWrdxCsBssUiH9huOn5clle4s2eAQwEBsj3e\nK694vD6hvnXIlZXyuatFWYGaQXbZvnvfPvlsdbIzoeayslwWF2/eXK/Oew517+64U6mWmEHWSEkJ\nsGmT/esqK6X8VouMgTczyK56O1rLzpaS0LQ079aJNW8usdPatXKW7vBh+W+HDs7bP27cKJ273M0g\nnzwp8ZqOXZbqLSRE5uLixeq53LNHkka+6pro1OjRElw2aSLlI4cOyZsmL8/+7f0xOHZm5kzJeDt6\nPbaKi+VNlJQkC5h+/3spU7HhyftSc40by4K2L76QRXyHDmnzuGfPylmQ776TRcn+EhyfPSsfBhqp\nUYOsKMh44QWgslKfABmQErf333f4N+oPvZDXrZM/h3ofi40dK0cnHm695k6A7Ow9WVwsn8VafOYG\nB8vvoaTExQ0zMny7NgOQvQH+8AeHV587J8mteh3o2Dp1Cpg+3WcZZAbIGtmwQVqx2tub4NdfJbDV\n4ojSmwGyuyorpXHBiy96Zwc9axaLBMWffipnYdUPnVtvBdascXy/TZukdNXdDLI/76DniebNa/59\neL28whM33yxB4J//LB/mb7wB/N//eWkFoQ7uuUfqwlNSZDHUAw/IaRZ7+8MritwuI0MWXG7cKPf3\npy0yVe3aSdRyxx1yvvTtt+u/ccyXX0o0lpHhXzv5ffqpLHxVd9ypJzVAVhQA//ynLNwtLdWnxEI1\ncqT8rdkRGyvl9WVlPh6TlXqXV6gaNQKefdbjwLHOGWRFAfLyNCuvULlVhzxypJQq+XLiQkOdbsjw\n889SK6zpR9rVVwNz56JDmzKcPavZ29QhBsgaOXVK/q1fX/s6rcorAP+oQX7nHfnvb3/rnXG4Y+BA\n2T/AnuPH5RRX//4Sr7jzXW6WAFn9+7DuYOE3AbLZXXutlAscPy71QIMGOf4Et1gkBbJkiRw4OKF7\nDTIgR6ZPPy2ZgM8/r38medIkyZ77aJMdtz32mGQ6Bg3S5IM2JERK9C/86z3gX/9C6qpVKAsMxtGj\njrtE6ikoSErtc3L0G0O9F+hZmzBBPgQ9WIzSqZOUwDj73rD7nvz5Z+CWW3D+vLZnIt2qQ27VSv6g\n7AUgOvFK/fFVVwFxcQg4fBDdunk/i8wAWSOnTsmHi71tKrU8nRYRYT8h5SvHjskaj/ff13f79759\npcTi0qXa123cKN3jmjSRg1x3doY2W4Csys42T4LWMK66SorkJk6UkglHbbw03w7TBzp1kqyvP0Z3\nWrBYpC56yBBg8GBpLVlP04PfQOPXXpHfW5s2OHRIMrW+aF5RF23bylnPejlyRHr8e6igQM76de1a\nz+dXBQdLhsqDsxShoRLgenyQsGgRMHYszp/XIYMMSF358uXaPXE9ZWZ6qaV6SgqQnY0ePby/5TQD\nZI0UFEiJ5Zdf1j7ydLvFmxv0rkGeOlX+6Z2VbNpUmj38+GPt6zZtqm6V7O5GIwcPmitAVufSr0os\nqE50rUH2xJ49Ujbz8suyNfnUqVIHOm+e3iPzjMUiLSNTU+VUVX2C5Pnz8eC5t7Bx1logIQEZGRn6\nlle4oU2betYhK4ps4/3ddx7fdf16OaGi6ZqJOpylcFVmUes9WVkp5Tn33Ydz53TIIAPVAbKHre28\nQVG8GCB37QpkZqJ7dwbIhnHqlCwKDg+vvVhPywxySIi8F+1lTr1NUaRrzu9+5/vntmfgQPt1yGoG\nGXA/QDZjBrmkRDJBZk32kZ/ZvVuONC9ckFrBDh2kxeHYsXqPzHMWi3QV+eMf65cOvP12zBm5FgfL\n21ZdpNsCPUc++6xGS4B6L9RbskRONTpZwOWIZvXH9eRxHfL338sCkJQUzUssQkPdDJC7dJGDUnsL\nobTm4jlyc+UmXmnfPmoUsGyZTxbq+eGKEGM6dUreH/fcI5811mWFWtYgWyzVQZDWC+Rc1TqeOOFf\nnR5uvVX2b7BWWio9kNUjV9udrBwxW4CcmpqKHTtkfZW/lXmSZ/yiBtkdd90l/8zCYql/D8sWLXB1\nYvVnUGpqKj7+WKOtd7WSkCC9xjt3BpKT0bat8w5BTp0/LxmURYvqtKPmunX+ccIhOdn5pn813pOK\nIrtrPv88AO16IKvCwtwssbBYfJe9Sk6W7jYO+oeq9cde6XDVvTuQlob27RQUFVlw8qS0dPUGZpA1\nUlAgJYV33y0dkdSzHEVF8setZceqiAh9OlkcPqxTn2AHbrpJSgisj67/9z9JXDVtKj+7k0EuKZED\nHG935PAF6wwyyyuIvEBR5EjcVlGR3Zvb9kL2uxKLbt2k28rddwPFxXXPIKvtjYYPl0UiTthbF1JY\nKCcgtNhnqL6SkyWx5ZZLl+R3d/fdAKBfBtlXzpyRbFnbttiwwf7Gqd7aIASARN233gpLgAXdu3s3\ni+z3AfKFC3qPwD1qBvnaayVjp07avn3Sh1bLBW2Rkd5ZqOeq1vHwYf/KsjZpIqUUa9dWX2ZdXgG4\nl0E+ckTq7vyiV3A9WdcgM0A2B8PUIDcU+flyBJ6QIMHgU09JXcBvfmP35ta76WVkZPhfiQUAPPyw\nnPZ8+GG0baPULUDes0cOEubOdXqz3bvld/Kf/9S8/McfZVviOiSe3Xf//W5tae5qN70a78mQEKm5\nv5Iu1XqRntsZZF/ZulXqgAMC8PXXshb5n/+seROvBshWvL1Qz28D5MxM6bRz7bV6j8Q9aoBssciB\npNrNQsvyCpVevZB122nOCds65I0bqxfoAe5lkM1SXgHI34baWYwt3oi8oGVLCQS//loWo7VpA0yZ\nIqcO7bA+SC8uln+xsT4cr7veegs4cADtv3kTx47VodV1SgrwzTfSOcKJY8fk2EJth66ebV27VsP2\nbo60a+fWrqUtW8rGdHX5ntV6kZ7fZZDVLaYhieSZM2XDsNmz5eqKCglab7zR+0Px9kI9pwFySUkJ\nevXqha5duyIlJQV//OMfAQBnzpzB4MGDkZSUhCFDhuCs1eHNrFmzkJiYiE6dOmHlypVVl2dlZaFL\nly5ITEzEU0895XRQd94ptbxjxkhwY+9slj9RlOoAGagOkBVF2w4WKm8FyK5qHf2txAKQOmTrfsib\nNtXMIDfEAFmtQWaLN3MwTA1yQ9K4sXywjxoli9HGjHGY+rQusYiOTkViond3H62z4GBgyRI0GTkY\n11xTxw0F3Xhh+flS1fHTT9L44YknZEHXunU+WKD3+9/Ll7OLLLLF4nyhnrP3pDf6IHucQVYU7y3W\ns9piOj9fsrhr1wILFgB//avEPFFR1fGQN3l7oZ7TADk4OBjp6enYtm0btm/fjvT0dGzYsAGzZ8/G\n4MGDsW/fPgwcOBCzrxw6ZGdn49NPP0V2djZWrFiBJ554AsqVw8PJkydj/vz52L9/P/bv348VK1Y4\nfN4BA4D9+4HHH5em5R70+NbF+fNyul89cO7eXYL6nTu9s2KZNcjVunWTfpUnTsib9dy5mvV97pRY\nmDFALi+Xej6/O5VL1MDExEgCpbzcDztY2IqPB5KTERMjn6nekJ8vv5NWrSQoPnhQNmnctcsHp+Uj\nIyXr70YWua476nljJz2PM8i//W3tGhatHD9eI4McEyOJqLVrgf/+F3joId+UVwBAfMR5XLokf1Pe\n4LLEIiQkBABQWlqKiooKhIeHY/ny5ZgwYQIAYMKECVi6dCkAYNmyZRg3bhyCgoIQHx+PhIQEZGZm\nIi8vD0VFReh55bc2fvz4qvvY8/vfVwebrVvLKRl/Zp09BqrLLBYv9l6JhV41yP4WIDdqJKfl0tOr\n64+t672bN5ezoc72sjdjgPzJJxmIjZU9K8jYWINsbI0ayfvyxAng++8z/DtAvqJFCxcbLOXkAN9+\nW6fHzsuTEgZAMq3ffCPPd/PNLqsztOFmFtnZQr2M776TOlA7vLFIz+MM8m23AR9+qN0grK1fX3Vq\nUj3YAeS/GRnAxYtAv37eeeoaSkpgiW+L/ted9VoW2WWAXFlZia5duyI6Ohq33HILOnfujBMnTiA6\nOhoAEB0djRNXDjWPHz+OOKtWAHFxccjNza11eWxsLHLdaU4L6Syg57aX7jh1qvamWGqAvH+/9iuW\n9ahBLi+XA8e2bV3f1tfUbadtyysACZZjYuRD2REzBchhYVLjeOgQyyuI/IV6Jisnx886WDhQI0BW\nFKl7fP554IEHJMt8ww2ynXpFhcePbR1UAVKZ8u9/1zne9lxkJPDss8COHU5v5nSh3uLFwL/+Zfcq\nbyzS8ziDPGKEvL56NbR2wmJBZaXEPtYt1qKipM3q449752lrCA4G+vXDfc2+9VodsssAOSAgANu2\nbUNOTg7WrVuH9PT0GtdbLBZYvFhQZYQMckFB7Xqb3r3lqC8iorrlmFb0qEE+dgyIjvbPnrq33ioL\n9WwX6Kmc1SFXVporQA4IUGvWUrlAzyRYg2x8aieLwsJU42WQLRZZUXf5snzYfv+9FCgvWVKn1j+2\nAbKqkS93ZZg+XerHnXBYYpGXh9Rly4CXXrJ7P28s0rPNICsK8NhjTlrRNWkidfEff6zdQGycPi2v\n07b0PiBA265dTt15J/oULPVaBtntP8nQ0FCMGDECWVlZiI6ORn5+PmJiYpCXl4eoK4cQsbGxOGYV\nzebk5CAuLg6xsbHIsUoD5+TkINbJMt6JEyci/soWLAcPhuHgwa4AUgFUn25UvzT84ecNG4DmzWtf\nf9ddwE8/ZSAjQ9vnO3oUOH3at6+3oiIV7dr5x+/b9mdFAYqLU5GZCVy+XPv3HRQE5Obav/+iRRlX\nNj/xn9dT35+vugpYvz4VU6f6x3j4M39u6D+3apWKnBxgz56MK7W9/jU+259btEhFQYHN9d27y895\neUi9EuXX5fEPHgRiYvzr9dr7uV07IDc3AytWAEOHXrl+zRrgmWeQ+sQTQFKS3fsXFGj7fVJcDJw7\nV/P6Q4dSMX8+cP58Bn77Wwf3f/BBZNx3H3DTTUi95RbNfz8nTgDXXFP7+1arx3fr54gIVG77FjtC\nSwAEu3X/bdu2VTWWOOKq5Z/iREFBgVJYWKgoiqJcvHhR6devn7J69WrlmWeeUWbPnq0oiqLMmjVL\nmT59uqIoirJr1y7l+uuvVy5fvqwcOnRIad++vVJZWakoiqL07NlT2bRpk1JZWakMGzZM+e677+w+\np+2QlixRlDvucDZK/c2ZoyhPP1378r17FeWrr7R/vl27FKVTJ+0fNz093eF177+vKBMmaP+cWrnv\nPkXp3Nn+dVOnKso//2n/uuXLFWXoUO+NSw833aQoFku6kpmp90hIC87el2QML72kKOPHK0p4eLre\nQ3HL228ryuOPe+exQ0MV5fRp7zy21q69VlG2brW6YNYsRenbV0lfvdrhfUJCFKWoSLsxlJcrSkCA\n/FdRFOXECUWJilKUDz9UlDZtFOVKiFVbZaWijB6tKKdOaTcYK6tWKcqtt3rloT1S2b+/Mq7Z18qx\nY3W7v7MwOMBZ8JyXl4dbb70VXbt2Ra9evTBq1CgMHDgQzz33HFatWoWkpCSsWbMGzz33HAAgJSUF\nY8eORUpKCoYNG4a0tLSq8ou0tDQ88sgjSExMREJCAoYOHeo8cr/CCDXI9kosAKk1GzlS++fTowbZ\nHxfoWRs9Wsrk7HFWYrFzp3F6bbsrMlJOwbEGmcg/tGolC4nbtNF7JO5p3ry6n7qWLl2Sf+Hh2j92\nvV26VOuiGgv1Ll4EPvlEyhYclJaUl8uC8Kuv1m5YgYHANddUb9T49NPAhAlSDn711bL2xi6LRcpg\nIiO1Gch339Wodz1xQsou9WaZOBH9ri3El19q/9hOSyy6dOmCrVu31ro8IiICq1evtnufGTNmYMaM\nGbUu7969O3a4KIq3xwg1yKdOSeNzX4mIkG05FUXbfprqaQh7Dh8Ghg3T7rm0NmaM/LMnNhb45Rf7\n1+3cCQwZ4r1x6SEyEmjdOlXz2nfSh7P3JRlDq1byPTZsWKreQ3GLyy4WdaQGVX7XB/rQIamv/vbb\nGrsr1VioFxIiXySBgUh1cKRTVCRrjrR+fWodcmam9I/esUOe4957pZe0vbU3mjp5Ehg/vsa2tY5q\nyX1u0iS0bwX85S/Ak09q+9BOM8j+IDpa/jAuX9Z7JI7Z62LhTUFB8l715e46/p5BdsZZL+Rdu4DO\nnX07Hm9r3pzZYyJ/oi65MUIHC8B7AbLfBFW22rcH/vY3CZLfe69ql5RaC/VcLErUugeyKixMOjFN\nniy71qkZ6nvvBT77rE7NRDwzYwbw4IM1Dh7y8/0jgwxIJ6ujR6VrmJb8PkAOCJAAx5/LLByVWHiT\nNzYLUQva7TFygOyoxEJt3G+2YLJ1ayAyMkPvYZBGnL0vyRhatZL/lpZm6DoOd3krQLbugex3HnhA\n0rHp6XIk078/rgv71W4nC0fvSa17IKtCQ4Fp06Q7lnV1aqdO0lpt/Xrtn7PKli2SWX/hhRoXq5uE\n+INGjYD77tO+aYffB8iA1CH7c5mF7UYhvuCtzULsuXBBsvh++8HmgppBvrKpY5UDByR41rJezB88\n+STw8MN6j4KIVJGR0iKzdWu9R+KeyEgp49M6M+m3GWTVgAGyHVx+PvDss2h/cwwOHnR/12ateyCr\nwsKA7Gz7rZfvu0/iepdOn/Z8x5HKSmDKFNl50OaF+VMGGQDuv18CZNvv+fowRIDcurV/Z5B9XWIB\neGehnqNaxyNHZIOQAEP8tdR2zTVSlmL72WDG8gpA5mngwFS9h0EaYQ2y8VkswFdfAfffn6r3UNzS\nqJHEQ1onYfw+QFYFBwMjR+Kq0MYIC6uquKji6D2pdQ9k1U03SWmFvYB07FhZi+cyiJ8zB/jDHzx7\n4m3b5Hcxfnytq/wpgwwAPXrI+2zLFvvXnz8Pj/slGyLk8eeFemVl8osPC/Pt8/qyk8Xhw8bfSMNe\nmYUZO1gQkX8aMsQPF6c54Y0yC8MEyFaionCld7Vr3iqxmDEDGDfO/nXt20v545o1Lh7kT38CVq1y\n44ZWunWTkhM72TF/yyBbtmbhrfb/xEcf2b9+6lTgkUc8e0wGyPV05oy0rKnDhkL14ssaZCPXH6vs\nLdQzc4DMulXz4Fyah5Hm0hsBsl/XIDsQHV07g+xoHr21SM+Ve+8FFi1ycaOmTYG335Yt+Oy0tHPI\nTnBcUSGxj6/PnDsVEYGBm2dh8aJylJXVvGr1ajk2OHDAsxIMBsj1pEd5BeDbGmQzBMj2MshmLbEg\nIqovZpBFdLT+GWRXxo4Fli1zo9vXqFGSFbZZcOepggJJDPp0e3BX2rVDYGJ7jIlcA+suxBcvAo8/\nDrz/vuzA7e5cAgYJkP15sxA9OlgAvq1BPnTI+AGybQb58mUJ/K/smGo6rFs1D86leRhpLlu00H6z\nECMGyFFR7tcge2uRnitxcdKBbeVKN2781luy4cmhQ3V+Pn+rP64ydiweC/+sRjeLF18EevYEhg8H\nEhMli+wuQwTI/p5BNkuA7IgZM8h79wLx8XJESURENTVvrm0GWVH8OLBywpMMsrcW6bnD7W4WUVFy\n+tTRwqK9e10+hL/VH1cZOxbJe5fi+69KUVws+7osWAC8/rpcnZDgWa9kQwTILVoAxcWSKvc3epVY\n+KoGWVHMuUhv1y7z1h8Dxqp1JOc4l+ZhpLnUusSisFA2uAoO1u4xfcHeIj1f90F2xz33AF9/7WZ5\nsaM0d1YW0L+/y13I/PZAp3VrBHTqiN92TMcXX8iivFdfrQ7mTZlBtlj8t8xCzxILX9QgnzkjNfrh\n4d5/Lm+yLbEw8wI9IqL60jpAzsvz06DKBXuL9BzRa5EeIONMSgJ+/rmOD1BaCjz0EPDaay5fhF+X\nynzxBZKnDsaUKRK3TJhQfZUpM8iA/24WYtQSC3u1ZfbqqsxQXgHUziDv3GnuBXpGqnUk5ziX5mGk\nudQ6QPbroMoJeyUWzmqQ9cogA7LT3qZNdbzz7NlSz3r//S5veuKEn5ZYAEB0NO64KwAdOgDvvFOz\ntaIpM8iA/24WomcXi7oGyN9+KwGjO6dizBIgx8TIh73aTN3sJRZERPXBAFl42gdZrwwyUI8A+Z13\ngFmzakeUDvj7XF59tdQfJyTUvFzNILvb6s1QAbI/ZpD1KrFo1ky2gLbt9+fK6dPAo49KLZhtLb69\nuiozdLAApB1N8+byQXfhgmSTbd88ZmKkWkdyjnNpHkaaS28EyEbrgQxIgHzqlOy6rHLWB9mQGeT9\n+6UPWlycWzf36wyyE+HhsjDf3ZIZBsj1pFeJhVoX7EkdsqIAkyfLatfBgyWL6ooZFuip1DKL3bul\nVsuvejgSEfkRtc2bJxsrOGPUGuTGjYFrrpFFhq7oXWLRrp0kzTw+2/7aa8ADD7h9c3/PIDuTmOh+\nHbJhAmR/rkHWazcZTxfqLVokQfHLL0v9bXZ2zevNXIMMVC/UawjlFUaqdSTnOJfmYaS5bNJEOk64\naGjgNiMHVbZlFo7mUc9FeoBUR9SrDtlNhsggnzxp9xeRkOB+HbJhAmR/rEFWFP1KLADP6pBzc4Gn\nngI+/FA+9Dp3dj+DbJYAWc0gs4MFEZFrWpZZGDlAdqeTxeXLsgWz3m3svB0gl5UBZ89K/OHXDh6U\nBYcVFTUuNmUG2VmJxZIlqLG1oK+ofZlDQnz/3ID7vZAVRbq3PPkk0L27XJaSUjuDbFtXVVkJ/Pqr\nbKhhBtYBspk7WADGqnUk5ziX5mG0udRyNz2j1iADtTtZ2JvHoiLJHruxxs2r6hIg/+lPwPLl7t32\n5ElJCgYGej42n7rpJkn9L1tW42JPMsiGqcKMiJAjtOJiqQey9sorspXgoEG+HZNaXqHXG8I2g3z+\nPDBxomSG4+LkoCIuTo72zp4F/vjH6tsmJsoBR0mJ4yPe48fl937VVV59GT7TqhWwbh0zyERE7tAy\ng2zUGmTA/nbTtvReoKe68UZg2zZpa9y4sevbl5YC8+ZJwHv77a5v77ebhNjzhz9IffXo0VUXmTKD\nrG4WYptFPnAA2LpVFl75mp7lFUDNGuSjR4E+feQP98svgenTZUOcxo0lg/zxxzUXpQUFyeK7PXuq\nL7OtqzJLBwtVbKxkzQsLzZMVd8RItY7kHOfSPIw2l862mz5+vFZyzqHLlyWB4/en5R2wzSDbm0e9\nF+ipmjaV7/bt2927/cqV8p3o7hovv91m2p677pIjM6uUuppBdmfxqWEyyEB1mUVycvVln38O3HEH\nsHGj78ejVwcLlZpB3rIFuPNOYNo04He/k4OJlBTX91cX6nXtav/6rVuB667Tdsx6io2VXYa6d5cu\nIERE5JizDPJ33wEffCDfv66cPClZWKN+7kZFud6hTu8FetbUMosePVzfdtEimcNff3XvsQ2VQQ4M\nlKDotdckWIR0/2rcGDiZX4noN2Y4vbuh/lztLdT77DN5/SUlvtl62ZqeHSwAKX/45htg+HAgLQ34\n/e89K/dISam5UM+2ruqnn4Cbb9ZmrP6gVSs5amwI5RVGq3UkxziX5mG0uXQWIO/b51nW0aj1x0Dt\nRXr25tFfMsgA0KuXe3XIFy8CX38tlQjuBsiGyiADsgDrhRdqXJTUoUI2hNiwweldDRcgW78h9+2T\n7Hm/fkCnTr4vs9C7xKJ1awnSV6xw7yjelr1Wb9Y2bpQ6d7MID5d664YQIBMR1ZezAHnvXimzsGkS\nYJeR648B+9tN2/KnANndhXrffCPrt7p3l9jKejMURwyVQQZk0Zr1l355Of5xcjwqDx6W4MkJQwXI\ntjXIn38O3HOPZNGTk30fIOtdYjF8OHDkSHVnCk/ZZpCt66rUBXwdOtRriH7FYpEsstk7WADGq3Uk\nxziX5mG0uXSVQa6ocG8bZiO3eAPc64PsTyUWyckyb64WWP73v8C4cdKJ65pr3FuQabgMsq1Jk9Ci\n0Rm8e/s3tTs+2DBUgGybQf7sM2DsWPl/vQJkPUssLBb3Vqk6Yt3JwtbGjVJeoXfLGq2lpQEDBug9\nCiIi/+coQK6okEXcnTu7V2Zh9ADZnT7I/pRBDgiQzHBmpuPbnDsH/PCDrGMDgDZt3CuzMFwG2db/\n+3/Ien4pdh9x3Z7LcAGyWoO8Z4+8cfv0kZ/t9fX1Nr1LLOqrcWNZ7bp3r/xsXVdltvIK1W23madt\nnTNGq3UkxziX5mG0uXQUIB89KkFjYqJ7G3gZvQZZTTQWF8t/HdUg+0sGGXBdZrF0KZCaCoSFyc9t\n2rh/sGPoDHLv3mif3MStVm+GC5DVCbQurwAaZomFFhwdWJhtgR4REXnGUYC8dy+QlCRlj+4EyEav\nQQZc90L2lz7Iqt69nWeQFy2S8gpVg8kgQw7s3Gn1ZqgAOTRUisjPnatZXgFIv96TJ4ELF3w3Hr1L\nLLRgveW0Wld16ZJspuFOixjyT0ardSTHOJfmYbS5vPpqCSLUXWNV+/YBHTs63+HWmtGQH76rAAAf\nP0lEQVRLLICaC/X8uQ+yqlcvYPNm+4soCwrkLPGoUdWXuRMgq5u1hYdrO1ZfCw+XvSBclc0YKkC2\nWOQNuXKltHSzznAGBkoDaLVcwBfMkkG2XqgHAFlZcrleW2gTEZH+LBb7WeR9+zzLIJstQLbHnxbp\nARKbREXV3AxMtWQJMGyYHACpWrd2HSAbvZ+1NTWL7IzhXmbr1sA//wmMGVN7knxZZlFZKUF6RIRv\nns9brFu9qXVVZq0/bkiMVutIjnEuzcOIc2lvNz1PAmRFMUeAbF1i4e99kFWO6pAXLQLuu6/mZe5k\nkM0wj6qEBNdbThsyQN60qWZ5hcqXAXJhobwZgoJ883zekpgoCy6sO1mw/piIiAD7GWS1BtmdEovz\n5+V70jpbaUSuMsj+tkgPkAD5xx9lx93Dh4H//U92QNy+HRg6tOZt3QmQT5ww+AI9K+5kkA211TQg\nb8i4OJl4W8nJUpvsC2YorwCqO1ns2yd1VYoiGeTXX9d7ZFQfRqt1JMc4l+ZhxLm0DZAvXpSf27YF\nystlAV5FRfWCeVtmWKAHSAZ53z75f0d9kP0tgzxgADBtGrBsmYxN/TdzJtCkSc3bxsRI4u/y5drX\nqcyWQV6+3PltDBcg9+8PREbar4FJTvZdqzejt3izpi7Uu+462XgkMFCOJomIqGGzDZAPHJCkSmCg\n/IuIkNIDR23cjN7iTRUd7XxnYn8ssbj2Wll0747AQNlIKyfH8QZhDS2DbLgSi1tvBZ580v51SUly\nGqGszPvjMEMHC5Xa6i0jIwM//ST1x2bbIKShMWKtI9nHuTQPI86lbYCs1h+rbHe4tWWWrKN1iYXt\nPCqKf2aQPeWqzMIscwmYtAbZmeBgKcFwdVSgBbOUWAA1W71xgR4REalsA+S9e6XFm8rVQj2zBFXO\n+iCXlEgG1lFpglG46mRhpgxyRITrNWSmCpAB3y3UM1OJhZpBTk1N5QI9kzBirSPZx7k0DyPOpasM\nsvUOt/YcP26OANlZH2R/XKBXFw0pgwxImYUzDJDryEwlFklJUnt85oxkB7p103tERETkD1q0kO87\nlaclFnv21Mw4G1V4uGySUVpa+zozlFcArgNksxzsqBISnF/PALmO8vLklIsZNG4sOxG+8EIGrr/e\n+KeJyJi1jmQf59I8jDiX7tQgO8sg79wpi8WMLiCguie07TyePg2EhekzLi21aeP4YOfsWcmgO1rA\nZ0TMIHtJdraUJphF587AN9+w/piIiKpZB8inTskmWdZnT52VWBQXy2l5swRVjnohZ2aa48yrswzy\nli3yGhsZrveZY8OGOb/edAFyp05ySqey0nvPUVYmR9FmCpBTUoDDh1NZf2wSRqx1JPs4l+ZhxLkM\nDQUuXJDSAjV7bN3lyFmJRXa2fCc76pFsNGqAbDuP69cD/frpMyYtqQGyotS+LjMT6NXL92Pypp49\nnV9vugA5NFRqhVztCFMf+/cDsbFASIj3nsPXOneW/zKDTEREqoAA2Xvg1Kna5RWAfBfm5dlPSpml\nvEJlr5OFopgnQG7WTA5mCgtrX7d5s+uA0mxMFyAD3i+z2LkT6NLFe4+vhxtuAFq3zkCrVnqPhLRg\nxFpHso9zaR5GnUu1zMJegNykidTf2muBZrbvSjWDbD2P+/ZJi9m2bfUbl5bslVkoijkzyK4wQK6D\nHTvMdVQMyIfeggV6j4KIiPyNGiDb9kBWOSqzMNt3ZVRU7Rpks2SPVfYW6h09KpnluDh9xqQXBsh1\nYLajYtXAgal6D4E0YsRaR7KPc2keRp1LZxlkwHEnC7OVWERHS6bceh7NGCDbZpDV7HFD22GXAXId\n7NhhzgCZiIjIVosWkjk9eNB+ayx7nSxOnQIuXjRX1tFeF4uGFCA3NKYOkO2txKyvCxekWbarBtNG\nZNT6OKqNc2kenEvzMOpctmgBbN0qi/Wuvrr29fZKLHbtkuyxmbKO6iI9dR5zc2WTkORkfcelJQbI\n1UwZIEdFSXBs3dxcK9nZUoNlpl6AREREjrRoAfz4o/3yCsB+iYXZyiuA2hlkNXscYKJIqnXrmgFy\nWRmwbRvQo4d+Y9KLiaa1msUiR3TZ2do/tpnLK4xaH0e1cS7Ng3NpHkadyxYtgEOHHAfIrVvXziCb\nca2Ouu12//6pAMxXXgHUziBv3y477TZtqt+Y9GLKABkAUlOBJUu0f1yzrcolIiJyRt05z5MMshm/\nK4OCpFfwmTPysxkD5NhYyZKXl8vPDbW8AjBxgDxlCvDxx3K0pyUzHhWrjFofR7VxLs2Dc2keRp3L\n5s3lv/ZavAESVB0/Xr1ZiKLId6W6AZWZREcDX32VgcJC4PBh2UPATIKCpEz1+HH5mQGyCbVsCdx9\nN/D229o+rhmPiomIiBxxlUEODpZdbNXNQnJz5TL1fmYSHS07zf34owSOQUF6j0h71mUWDJBNato0\nCZAvXNDm8QoKgJISc7WtsWbU+jiqjXNpHpxL8zDqXEZGyiKt+HjHt7EuszDjAj1VVBTQqlUq1q0z\nX3mFSg2Qz56Vgx0znglwh6kD5I4dgT59tNshTi2vMFPbGiIiImcaNQK2bHHevck2QDZrKaLaycKM\n9ccqtZPFli1At24Nt2uXqQNkAHj2WeC116oLzuvD7OUVRq2Po9o4l+bBuTQPM8+ldScLM39XRkUB\n69dnYPt2oHdvvUfjHWoGuSGXVwANIEC+6SY5sl28uP6PZeajYiIiorpqKCUW0dHAxo0SC4SE6D0a\n72jTRg52MjOBnj31Ho1+TB8gA8D06cCrr9Z/Zz0zHxUDxq2Po9o4l+bBuTQPM8+lGiBXVMhOtikp\neo/IO6KjgePHU01bXgFIgHz0KDPIDSJAHj4cuHwZ+OGHuj9GZaVsnckMMhERUU1qicWhQxJEmnVj\niago+a/ZA+TsbKk9NmtTAnc0iAA5IAB45hnJItfVr79Kg/DwcO3G5W/MXB/X0HAuzYNzaR5mnks1\ng2zm8gpAgn8gA3366D0S74mIABo3luxxQ25K4DJAPnbsGG655RZ07twZ1157LebOnQsAOHPmDAYP\nHoykpCQMGTIEZ8+erbrPrFmzkJiYiE6dOmHlypVVl2dlZaFLly5ITEzEU0895YWX49hvfiOnfX7+\nuW73N3t5BRERUV3FxkpLsO3bzX2mtU0bKduMjNR7JN5jscjrbMjlFQBgURTnlbn5+fnIz89H165d\nUVxcjO7du2Pp0qVYsGABmjdvjmeffRZ///vfUVhYiNmzZyM7Oxu/+c1vsGXLFuTm5mLQoEHYv38/\nLBYLevbsibfeegs9e/bE8OHDMXXqVAwdOrTmgCwWuBhSnc2dC6SnA19+6fl9Z82S7SXnzNF+XERE\nREbXooX0zH3sMUlKkXFNnQpMnCht3szMWczpMoMcExODrl27AgCuueYaJCcnIzc3F8uXL8eECRMA\nABMmTMDSpUsBAMuWLcO4ceMQFBSE+Ph4JCQkIDMzE3l5eSgqKkLPK0six48fX3UfX3nkEVl9unOn\n5/dlBpmIiMixuDjZYY7flcY3d675g2NXPKpBPnLkCH755Rf06tULJ06cQLQU4yA6OhonTpwAABw/\nfhxxVlXdcXFxyM3NrXV5bGwscnNztXgNbgsJAX7/e+CVVzy/744d5j5tBJi7Pq6h4VyaB+fSPMw+\nl3Fx0i2qY0e9R+JdZp9HEm4HyMXFxbj77rvxxhtvoKnN8lSLxQKLQSq5J08GVq4E9u93/z6lpcCB\nA0BysvfGRUREZGStWwNJSUCTJnqPhKj+3NpAsKysDHfffTcefPBB3HnnnQAka5yfn4+YmBjk5eUh\n6krvk9jYWBxTt9MBkJOTg7i4OMTGxiJH7SJ+5fLY2Fi7zzdx4kTEX9n0PSwsDF27dq3qH6keudX1\n561bMzByJDB7dirmz3fv/ocPA23apOKqq+r//P78c2pqql+Nhz/zZ/4sP6v8ZTz8uW4/q5f5y3i0\n/rm0NONKlwf/GA9/5s+2P2/btq2qqcSRI0fgjMtFeoqiYMKECYiMjMS//vWvqsufffZZREZGYvr0\n6Zg9ezbOnj1bY5He5s2bqxbpHThwABaLBb169cLcuXPRs2dPjBgxwueL9FRnzgCJicDWrUDbtq5v\n/9//AkuWaLMbHxERkRn9+itw9ixw3XV6j4TIPfVapPfjjz/io48+Qnp6Om644QbccMMNWLFiBZ57\n7jmsWrUKSUlJWLNmDZ577jkAQEpKCsaOHYuUlBQMGzYMaWlpVeUXaWlpeOSRR5CYmIiEhIRawbGv\nRETIgj1nfZGLiyUoHj8emDIFGDjQd+PTi3q0RcbHuTQPzqV5mH0u27RpGMGx2eeRhMsSi759+6Ky\nstLudatXr7Z7+YwZMzBjxoxal3fv3h07duzwcIje8fTTUlP8/PNAy5ZyWV4e8NVXwLJlwPr1QO/e\nwB13AC+/LLVVRERERGR+LkssfM0XJRaqp54Czp+XRQVLlwL79gFDh0pQPGwYEBrqk2EQERERkY85\nizkbdICckwOMGgX06SNB8YABsr0iEREREZlbvWqQzSwuDvjlF+Ctt4DBgxkcs67KPDiX5sG5NA/O\npTlwHhuGBh0gExERERHZatAlFkRERETUMLHEgoiIiIjITQyQqQrrqsyDc2kenEvz4FyaA+exYWCA\nTERERERkhTXIRERERNTgsAaZiIiIiMhNDJCpCuuqzINzaR6cS/PgXJoD57FhYIBMRERERGSFNchE\nRERE1OCwBpmIiIiIyE0MkKkK66rMg3NpHpxL8+BcmgPnsWFggExEREREZIU1yERERETU4LAGmYiI\niIjITQyQqQrrqsyDc2kenEvz4FyaA+exYWCATERERERkhTXIRERERNTgsAaZiIiIiMhNDJCpCuuq\nzINzaR6cS/PgXJoD57FhYIBMRERERGSFNchERERE1OCwBpmIiIiIyE0MkKkK66rMg3NpHpxL8+Bc\nmgPnsWFggExEREREZIU1yERERETU4LAGmYiIiIjITQyQqQrrqsyDc2kenEvz4FyaA+exYWCATERE\nRERkhTXIRERERNTgsAaZiIiIiMhNDJCpCuuqzINzaR6cS/PgXJoD57FhYIBMRERERGSFNchERERE\n1OCwBpmIiIiIyE0MkKkK66rMg3NpHpxL8+BcmgPnsWFggExEREREZIU1yERERETU4LAGmYiIiIjI\nTQyQqQrrqsyDc2kenEvz4FyaA+exYWCATERERERkhTXIRERERNTgsAaZiIiIiMhNDJCpCuuqzINz\naR6cS/PgXJoD57FhYIBMRERERGSFNchERERE1OCwBpmIiIiIyE0MkKkK66rMg3NpHpxL8+BcmgPn\nsWFggExEREREZIU1yERERETU4LAGmYiIiIjITQyQqQrrqsyDc2kenEvz4FyaA+exYWCATERERERk\nhTXIRERERNTgsAaZiIiIiMhNLgPkhx56CNHR0ejSpUvVZWfOnMHgwYORlJSEIUOG4OzZs1XXzZo1\nC4mJiejUqRNWrlxZdXlWVha6dOmCxMREPPXUUxq/DNIC66rMg3NpHpxL8+BcmgPnsWFwGSBPmjQJ\nK1asqHHZ7NmzMXjwYOzbtw8DBw7E7NmzAQDZ2dn49NNPkZ2djRUrVuCJJ56oSl1PnjwZ8+fPx/79\n+7F///5aj0n627Ztm95DII1wLs2Dc2kenEtz4Dw2DC4D5H79+iE8PLzGZcuXL8eECRMAABMmTMDS\npUsBAMuWLcO4ceMQFBSE+Ph4JCQkIDMzE3l5eSgqKkLPnj0BAOPHj6+6D/kP6zMBZGycS/PgXJoH\n59IcOI8NQ51qkE+cOIHo6GgAQHR0NE6cOAEAOH78OOLi4qpuFxcXh9zc3FqXx8bGIjc3tz7jJiIi\nIiLyinov0rNYLLBYLFqMhXR25MgRvYdAGuFcmgfn0jw4l+bAeWwYGtXlTtHR0cjPz0dMTAzy8vIQ\nFRUFQDLDx44dq7pdTk4O4uLiEBsbi5ycnBqXx8bG2n3s66+/ngG3jhYuXKj3EEgjnEvz4FyaB+fS\nHDiP5tChQweH19UpQL799tuxcOFCTJ8+HQsXLsSdd95ZdflvfvMbPP3008jNzcX+/fvRs2dPWCwW\nNGvWDJmZmejZsyf+85//YOrUqXYfm8XvRERERKQnlwHyuHHjsHbtWpw6dQqtW7fGSy+9hOeeew5j\nx47F/PnzER8fj88++wwAkJKSgrFjxyIlJQWNGjVCWlpaVTY4LS0NEydOxKVLlzB8+HAMHTrUu6+M\niIiIiKgO/G4nPSIiIiIiPXEnvQaovLxc7yGQBgoKCgBwPs3g559/xsmTJ/UeBmmALcDMo7S0VO8h\nkEbq8j3JALkByczMxAMPPIA//vGP2LFjh8P9x8l/KYqCCxcu4L777sMdd9wBAGjUqBHn0qB27dqF\nm266CTNnzkRhYaHew6F6yMzMxB133IFHH30U8+fPR0lJid5DojrauHEjxowZg2nTpiE7OxsVFRV6\nD4nqqD5xDwPkBkBRFMycOROPPPIIhg0bhvLycrz99tv45Zdf9B4aechiseDqq68GAJw+fRppaWkA\ngMrKSj2HRXX0+uuv46677sLXX3+Njh07AgAPdgwoKysLkydPxj333IN77rkH6enpOHDggN7Dojo4\nefIkpkyZguHDhyMyMhJvvPEGPvjgA72HRR7SIu5hgNwAWCwWxMXFYeHChbj//vvx/PPP4+jRozwq\nNqDy8nLk5eUhOjoa//d//4d58+ahsLAQgYGBnE+DKSgoQEBAAJ588kkAwBdffIFjx47h0qVLABgo\nG8mmTZvQoUMHPPjggxgyZAguXbqENm3a6D0sqoMdO3YgKSkJkyZNwrRp0zB69GgsW7YM+/bt03to\n5AGLxYK2bdvWK+4JnDlz5kzvDZH08sknn+Dzzz/H+fPn0alTJyQnJyM2NhalpaVo1qwZli9fjvbt\n21dlrcg/qfNYXFyMjh07IiAgAE2bNsU777yD+++/H7m5ucjMzES7du3QvHlzvYdLTqhzWVRUhI4d\nO8JiseBPf/oTEhIS8OKLL2L9+vXYsmULVq5cidtvv5394P2Y7edrmzZtMG3aNBQXF+ORRx5BQEAA\nfv75Z+zZswd9+/bVe7jkREZGBvLz86t2+23WrBn++te/YsSIEYiOjkZ4eDiOHTuGn376CbfddpvO\noyVnbOcyOTkZrVq1QllZGZo2bepx3MMMsskoioJ58+Zhzpw5iI+PxzPPPIMFCxagvLwcgYGBCA4O\nRllZGY4dO4ZOnTrpPVxywHYe//CHP2DBggUoLi7GkSNHEB8fj7i4OAwePBjz5s3DmDFjcPnyZZSV\nlek9dLJhO5fTpk3De++9h5CQEDz++ON44oknMGTIEHz//fd4+eWXsXPnTnz77bd6D5vssPf5+t57\n7yEmJgbZ2dkoKSnBq6++ik2bNmHixIn48ccfsXHjRr2HTXYUFRVh9OjRuOuuu/Duu+/izJkzAIDm\nzZtj7NixmDt3LgAgPDwcgwYNwsWLF5GXl6fnkMkBR3PZuHFjBAYGokmTJnWKexggm4zFYsGmTZsw\nffp0PPTQQ0hLS8Pq1auxbt26qlO22dnZiI6ORlJSEs6fP4/NmzfrPGqyZW8eV61ahQ0bNiAiIgJH\njx7FqFGjMG3aNAwYMADx8fFo0qQJgoKC9B462bA3lxkZGVixYgUmTZqE8vLyqo4ksbGx6Nu3LwID\nA3UeNdnjaC6//fZbxMTEYPXq1VVncrp164aoqCg0btxY51GTPY0bN8Ytt9yCjz/+GK1atcLnn38O\nQA6CxowZgz179mD16tUICAhAZGQkcnNzERoaqvOoyR5HcxkQUB3i7t692+O4hwGyCXz44YdYu3Zt\n1VFTcnIycnNzUV5ejkGDBqFLly7YsGFD1f7xp0+fRkhICBYsWICbb74ZO3bs0HH0pHI1j9dddx3W\nr1+PvXv3omXLlmjXrh2ysrLw1Vdf4ddff0VWVpbOr4BU7szlmjVr0LhxY7z55pv48MMPsW3bNsyb\nNw+rV69GfHy8vi+Aqrgzl+qp3UcffRSvvvoqKisr8emnn2Lnzp2IjIzU+RWQ6sMPP0RGRgYKCwvR\npEkTPProoxg0aBCSkpKQlZWFPXv2wGKxoEuXLhg3bhx+97vf4cCBA1izZg0URWHbNz/iai7VmnH1\nrGpd4h7WIBuUoijIy8vDqFGj8L///Q+5ublYunQpBg0ahPz8fBw5cgRt2rRB8+bNERcXh48++gi9\ne/dGy5YtMW/ePLz33nsIDw/HnDlzMGzYML1fToPlyTzGxsbio48+wsCBA/Hggw9i5MiRaNKkCQDg\n3nvvRfv27XV+NQ2bp3P58ccfo3Pnzhg4cCCaNWuGjIwMbNy4EW+99RZSUlL0fjkNmqdz+cknn6BH\njx4YNWoUfvjhB/z73//Gtm3b8M477yAxMVHvl9OgOZrL/v37IzQ0FIGBgQgJCcH+/fuxb98+DBgw\nAAEBAejatSuKi4uxdOlSrF27FnPnzkXr1q31fjkNmidzuXfvXgwYMKDqbNx7772Hd99916O4hxlk\nAyovL4fFYkFRURFiY2OxZs0apKWlISwsDE8++STGjh2LgoICbN68GefOnUN8fDxCQ0OxePFiAMAd\nd9yB//73v1iwYAGuv/56nV9Nw+XpPLZr1w7NmjXD4sWL0bhxY1RWVla1dwsLC9P51TRsdZnLsLAw\nLFmyBABw//33429/+xuWLVuGa6+9VudX07DVZS6tP1/nz5+P+fPnY9WqVTzQ0ZmjuYyIiMDjjz9e\ndbukpCT06NEDeXl5OHDgAIqLi1FRUYFnn30WaWlp2LBhA+dSZ3WdywsXLgAARo0a5XHc08grr4S8\noqKiAs8//zwqKysxbNgwFBUVoVEjmcJGjRrhzTffRMuWLZGdnY1x48bhyy+/RE5ODmbMmIHAwEDc\ndNNNAIA+ffro+TIavPrOY69evQDUrK8ifWj1ngQ4n3qr71z27t0bABAUFIQWLVro+VIaPFdz+cYb\nb6BVq1ZYu3YtBgwYAAC46667sHv3btx2220oLi5GRkYGkpOTq87SkT60mMv09HTcfPPNHj83P5EN\nYu3atejevTvOnj2LhIQE/PnPf0ZQUBDS09Oris0DAwPxwgsvYPr06Rg0aBAef/xx/Pjjj+jVqxcK\nCwuRmpqq74sgzqOJcC7Ng3NpHu7O5cyZM/HCCy9U3e+zzz7Dyy+/jFtuuQU7duxAcnKyXi+BrtBq\nLuua/bco7EZvCOvWrcPRo0fx4IMPAgAmT56M6667DsHBwXjrrbeQlZWFiooKFBQUYMqUKZgzZw7a\ntWuHwsJCXLx4EbGxsTq/AgI4j2bCuTQPzqV5eDKXTz75JF599VW0a9cO69atAwD0799fz+GTFb3n\nkhlkg7jxxhsxZsyYql1g+vbti19//RWTJk1CRUUF5s6di8DAQOTk5CAoKAjt2rUDID0c+eHtPziP\n5sG5NA/OpXl4MpeNGjWqmsv+/fszOPYzes8lA2SDuOqqqxAcHFy1InPVqlVV/TY/+OAD7N69GyNG\njMC4cePQrVs3PYdKTnAezYNzaR6cS/PgXJqH3nPJEguDUVdyjhw5Em+++SYSEhJw4MABREZGYteu\nXVU7rJF/4zyaB+fSPDiX5sG5NA+95pIZZINp1KgRysrK0Lx5c2zfvh0jRozAX//6VwQGBqJv3758\nwxsE59E8OJfmwbk0D86leeg1l2zzZkC//PILPv74Yxw+fBiTJk3Cww8/rPeQqA44j+bBuTQPzqV5\ncC7NQ4+55E56BmSxWBAZGYl3330XN954o97DoTriPJoH59I8OJfmwbk0Dz3mkjXIRERERERWWINM\nRERERGSFATIRERERkRUGyEREREREVhggExERERFZYYBMRERERGSFATIRERERkRUGyEREBjFz5ky8\n9tprDq9ftmwZdu/e7cMRERGZEwNkIiKDsFgsTq//8ssvkZ2d7aPREBGZFzcKISLyYy+//DI+/PBD\nREVFoXXr1ujevTtCQ0Px3nvvobS0FAkJCfjPf/6DX375BaNGjUJoaChCQ0PxxRdfoLKyElOmTEFB\nQQFCQkLw/vvvo2PHjnq/JCIiv8cAmYjIT2VlZWHSpEnYvHkzysrK0K1bN0yePBkTJ05EREQEAODP\nf/4zoqOjMWXKFEyaNAmjRo3C6NGjAQADBw7Eu+++i4SEBGRmZmLGjBn44Ycf9HxJRESG0EjvARAR\nkX3r16/H6NGjERwcjODgYNx+++1QFAU7duzA888/j3PnzqG4uBhDhw6tuo+a8yguLsbGjRsxZsyY\nqutKS0t9/hqIiIyIATIRkZ+yWCywd5Jv0qRJWLZsGbp06YKFCxciIyOjxn0AoLKyEmFhYfjll198\nNVwiItPgIj0iIj/Vv39/LF26FCUlJSgqKsJXX30FACgqKkJMTAzKysrw0UcfVQXFTZs2xfnz5wEA\nzZo1Q7t27bB48WIAklnevn27Pi+EiMhgWINMROTHXnnlFSxcuBBRUVFo27YtunXrhpCQELz66qto\n0aIFevXqheLiYnzwwQf46aef8OijjyI4OBiLFy+GxWLB5MmTkZeXh7KyMowbNw7PP/+83i+JiMjv\nMUAmIiIiIrLCEgsiIiIiIisMkImIiIiIrDBAJiIiIiKywgCZiIiIiMgKA2QiIiIiIisMkImIiIiI\nrDBAJiIiIiKywgCZiIiIiMjK/wfOztNDa8uqtQAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x519a950>" | |
] | |
} | |
], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment