Last active
November 30, 2018 17:57
-
-
Save daskelly/1ad3ab8a840ec5b297938a537dec5531 to your computer and use it in GitHub Desktop.
parallel version of find_specific_markers.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(Seurat) | |
library(doParallel) | |
# Find specific markers for each cell type | |
n.cores <- 10 | |
registerDoParallel(cores=n.cores) | |
celltypes <- # list of cell types (unique ident labels of Seurat object) | |
obj <- # Seurat object | |
# First we do all pairwise comparisons and retain any markers that | |
# are even somewhat higher in the cell type of interest | |
specific_markers_par <- foreach(i=1:length(celltypes), .combine=rbind) %dopar% { | |
celltype1 <- celltypes[i] | |
other_types <- setdiff(celltypes, celltype1) | |
celltype_markers <- NULL | |
for (celltype2 in other_types) { | |
message(paste0(celltype1, " * ", celltype2)) | |
markers <- FindMarkers(obj, ident.1=celltype1, ident.2=celltype2, | |
only.pos=TRUE, min.diff.pct=0.05, test.use="roc", | |
max.cells.per.ident=2000) %>% | |
rownames_to_column("gene") %>% | |
mutate(ident.2=celltype2) | |
celltype_markers <- rbind(celltype_markers, markers) | |
} | |
celltype_markers$ident.1 <- celltype1 | |
celltype_markers | |
} | |
# In specific_markers data.frame, ident.1 is which cell pop the marker is tagging | |
# and ident.2 is which other cell pop we are contrasting with | |
# | |
# We want markers that are considerably higher in ident.1 than in any other pop. | |
# As a basic filter we require any marker for ident.1 to be expressed in <50% of | |
# cells of each of the other cell types. | |
# | |
# Here we will filter to get the top 10 markers for each cell type | |
topN <- 10 | |
npop <- length(celltypes) | |
final_markers <- mutate(specific_markers_par, pct_diff=pct.1 - pct.2) %>% | |
group_by(ident.1, gene) %>% | |
filter(n() == npop - 1, all(pct.2 < 0.6)) %>% | |
summarize(median_AUC=median(myAUC), pct.1=mean(pct.1), pct.2=mean(pct.2)) %>% | |
mutate(cluster=ident.1) %>% | |
filter(median_AUC > 0.65) %>% | |
group_by(cluster) %>% | |
arrange(desc(median_AUC)) %>% | |
do(head(., topN)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment