Created
April 9, 2017 13:02
-
-
Save daskol/c8a448ef6fefcc9a7a18368c6908aa93 to your computer and use it in GitHub Desktop.
RandomPolicyAgent for FrozenLake-v0
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python3 | |
| # frozen-lake.py | |
| """FrozenLake игрушечная задача для обучения с подкреплением. | |
| """ | |
| import click | |
| import gym | |
| import gym.wrappers.monitoring | |
| import logging | |
| import numpy as np | |
| from tqdm import tqdm | |
| class RandomPolicyAgent(object): | |
| def __init__(self, env=None, num_episodes=100, num_samples=100, policy=None): | |
| self.env = env or gym.make('FrozenLake-v0') | |
| self.n_actions = env.action_space.n | |
| self.n_states = env.observation_space.n | |
| self.n_episodes = num_episodes | |
| self.episode = 0 | |
| self.num_samples = num_samples | |
| self.best_policy = policy | |
| self.best_reward = float('-inf') | |
| self.last_policy = self.random_policy() | |
| self.last_reward = None | |
| def play(self, eval=False): | |
| # Сэмплируем новую политику? | |
| sample = self.episode % self.num_samples | |
| if sample == 0 and not eval: | |
| self.last_policy = self.random_policy() # новая policy | |
| self.last_reward = np.zeros(self.num_samples) | |
| elif eval: | |
| self.last_policy = self.best_policy | |
| # Играем один эпизод | |
| policy = self.last_policy | |
| state = self.env.reset() | |
| total_reward = 0 | |
| for _ in range(self.n_episodes): | |
| action = policy[state] | |
| state, reward, done, _ = self.env.step(action) | |
| total_reward += reward | |
| if done: | |
| break | |
| # Обновляем счётчики | |
| self.last_reward[sample] = total_reward | |
| self.episode += 1 # так мы можем проверить новую стратегию | |
| # Нашли лушую политику? | |
| if sample + 1 == self.num_samples \ | |
| and self.last_reward.mean() > self.best_reward: | |
| self.best_reward = self.last_reward.mean() | |
| self.best_policy = self.last_policy | |
| logging.info('best reward is %7.3f', self.best_reward) | |
| return total_reward | |
| def evaluate(self, num_samples=100): | |
| rewards = np.zeros(num_samples) | |
| backup_num_samples = self.num_samples | |
| self.num_samples = num_samples | |
| self.last_reward = np.zeros(self.num_samples) | |
| for i in range(num_samples): | |
| rewards[i] = self.play(eval=True) | |
| self.num_samples = backup_num_samples | |
| self.last_reward = np.zeros(self.num_samples) | |
| return rewards.mean() | |
| def random_policy(self, size=None): | |
| size = size or self.n_states | |
| return np.random.randint(0, self.n_actions, size=size) | |
| def window_score(rewards, length): | |
| best_start = None | |
| best_score = float('-inf') | |
| for i in range(rewards.shape[0] - length): | |
| score = rewards[i:i + length].mean() | |
| if score > best_score: | |
| best_score = score | |
| best_start = i | |
| return best_score | |
| def evaluate(agent, train_steps=100000, eval_steps=100): | |
| logging.info('train agent on %d steps', eval_steps) | |
| logging.info('evaluate agent on %d steps', eval_steps) | |
| rewards = np.zeros(train_steps) | |
| for i in tqdm(range(train_steps)): | |
| rewards[i] = agent.play() | |
| reward = window_score(rewards, eval_steps) | |
| return reward, rewards | |
| @click.command(help=__doc__) | |
| @click.option('--episodes', default=100000) | |
| @click.option('--monitor', default=None) | |
| def main(episodes, monitor): | |
| logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', | |
| level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.INFO) | |
| if monitor: | |
| logger = logging.getLogger(gym.wrappers.monitoring.__name__) | |
| logger.setLevel(logging.WARNING) | |
| env = gym.make('FrozenLake-v0') | |
| env = gym.wrappers.Monitor(env, monitor, force=True) | |
| else: | |
| env = gym.make('FrozenLake-v0') | |
| agent = RandomPolicyAgent(env, num_samples=100) | |
| score, hist = evaluate(agent, episodes) | |
| logging.info('Final avarage: %7.3f', score) | |
| if __name__ == '__main__': | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment