Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save databyjp/56362c588f6acee399530483726a31a8 to your computer and use it in GitHub Desktop.
Save databyjp/56362c588f6acee399530483726a31a8 to your computer and use it in GitHub Desktop.
# Build a correlation (and p-value) matrix
r_array = np.zeros([len(symbols_ser), len(symbols_ser)])
p_array = np.zeros([len(symbols_ser), len(symbols_ser)])
for i in range(len(symbols_ser)):
for j in range(len(symbols_ser)):
ser_i = total_ticker_df[total_ticker_df.sym == symbols_ser[i]]['close'].values
ser_j = total_ticker_df[total_ticker_df.sym == symbols_ser[j]]['close'].values
r_ij, p_ij = scipy.stats.pearsonr(ser_i, ser_j)
r_array[i, j] = r_ij
p_array[i, j] = p_ij
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment