Skip to content

Instantly share code, notes, and snippets.

@databyjp
Last active February 1, 2021 17:31
Show Gist options
  • Save databyjp/6468b82b2cb17242135c4a567640fbbc to your computer and use it in GitHub Desktop.
Save databyjp/6468b82b2cb17242135c4a567640fbbc to your computer and use it in GitHub Desktop.
def clean_chart_format(fig):
fig.update_layout(
paper_bgcolor="white",
plot_bgcolor="white",
annotations=[
go.layout.Annotation(
x=0.9,
y=1.02,
showarrow=False,
text="Twitter: @_jphwang",
xref="paper",
yref="paper",
textangle=0
),
],
font=dict(
family="Arial, Tahoma, Helvetica",
size=10,
color="#404040"
),
margin=dict(
t=20
)
)
fig.update_traces(marker=dict(line=dict(width=1, color='Navy')),
selector=dict(mode='markers'))
fig.update_coloraxes(
colorbar=dict(
thicknessmode="pixels", thickness=15,
outlinewidth=1,
outlinecolor='#909090',
lenmode="pixels", len=300,
yanchor="top",
y=1,
))
fig.update_yaxes(showgrid=True, gridwidth=1, tickson='boundaries', gridcolor='LightGray', fixedrange=True)
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='LightGray', fixedrange=True)
return True
def make_shot_dist_chart(input_df, color_continuous_scale=None, size_col='shots_count', col_col='pl_acc', range_color=None):
max_bubble_size = 15
if color_continuous_scale is None:
color_continuous_scale = px.colors.diverging.RdYlBu_r
if range_color is None:
range_color = [min(input_df[col_col]), max(input_df[col_col])]
fig = px.scatter(
input_df, x='min_mid', y='player', size=size_col,
color=col_col,
color_continuous_scale=color_continuous_scale,
range_color=range_color,
range_x=[0, 49],
range_y=[-1, len(input_df.player.unique())],
hover_name='player', hover_data=['min_start', 'min_end', 'shots_count', 'shots_made', 'shots_freq', 'shots_acc', ],
render_mode='svg'
)
fig.update_coloraxes(colorbar=dict(title='Points per<BR>100 shots'))
fig.update_traces(marker=dict(sizeref=2. * 30 / (max_bubble_size ** 2)))
fig.update_yaxes(title="Player")
fig.update_xaxes(title='Minute', tickvals=list(range(0, 54, 6)))
return fig
app.title = 'Dash Demo - NBA'
team_names = all_teams_df.group.unique()
team_names.sort()
app.layout = html.Div([
html.Div([
dcc.Markdown(
"""
#### Shot Frequencies & Efficiencies (2019-20 NBA Season)
This page compares players based on shot *frequency* and *efficiency*,
divided up into minutes of regulation time for each team.
Use the pulldown to select a team, or select 'Leaders' to see leaders from each team.
*Notes*:
* **Frequency**: A team's shots a player is taking, indicated by **size**.
* **Efficiency**: Points scored per 100 shots, indicated by **colour** (red == better, blue == worse).
* Players with <1% of team shots are shown under 'Others'
"""
),
html.P([html.Small("See more data / NBA analytics content, find me on "), html.A(html.Small("twitter"), href="https://twitter.com/_jphwang", title="twitter"), html.Small("!")]),
]),
html.Div([
dcc.Dropdown(
id='group-select',
options=[{'label': i, 'value': i} for i in team_names],
value='TOR',
style={'width': '140px'}
)
]),
dcc.Graph(
'shot-dist-graph',
config={'displayModeBar': False}
)
])
@app.callback(
Output('shot-dist-graph', 'figure'),
[Input('group-select', 'value')]
)
def update_graph(grpname):
fig = make_shot_dist_chart(
all_teams_df[all_teams_df.group == grpname], col_col='pl_pps', range_color=[90, 120], size_col='shots_freq')
clean_chart_format(fig)
if len(grpname) > 3:
fig.update_layout(height=850, width=1250)
else:
fig.update_layout(height=500, width=1250)
return fig
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment