Skip to content

Instantly share code, notes, and snippets.

@dataders
Last active April 2, 2019 22:21
Show Gist options
  • Save dataders/0816c3a38dd5a0522a2a4f04a1b042ba to your computer and use it in GitHub Desktop.
Save dataders/0816c3a38dd5a0522a2a4f04a1b042ba to your computer and use it in GitHub Desktop.
hypodrive metric output debug
http:///pipelines/subscriptions/ff2e23ae-7d7c-4cbd-99b8-116bb94dca6e/resourceGroups/RG-ITSMLTeam-Dev/providers/Microsoft.MachineLearningServices/workspaces/avadevitsmlsvc/experiment/undefined/run/115f70d3-91f7-4052-bbb1-1aef0da3c2e3
[2019-04-01 23:06:54Z] Metrics for HyperDrive run:
[2019-04-01 23:06:54Z] {}
[2019-04-01 23:06:57Z] azureml-logs/hyperdrive.txt
[2019-04-01 23:06:58Z] "<START>[2019-04-01T22:59:45.973424][API][INFO]Experiment created<END>\n"
[2019-04-01 23:06:58Z] "<START>[2019-04-01T22:59:46.318831][GENERATOR][INFO]Trying to sample '4' jobs from the hyperparameter space<END>\n"
[2019-04-01 23:06:58Z] "<START>[2019-04-01T22:59:46.413609][GENERATOR][INFO]Successfully sampled '4' jobs, they will soon be submitted to the execution target.<END>\n"<START>[2019-04-01T22:59:48.1588418Z][SCHEDULER][INFO]The execution environment is being prepared. Please be patient as it can take a few minutes.<END>"<START>[2019-04-01T23:00:16.318398][GENERATOR][INFO]Max number of jobs '4' reached for experiment.<END>\n""<START>[2019-04-01T23:00:16.952672][GENERATOR][INFO]All jobs generated.<END>\n"<START>[2019-04-01T23:00:18.7742394Z][SCHEDULER][INFO]The execution environment was successfully prepared.<END><START>[2019-04-01T23:00:18.7744093Z][SCHEDULER][INFO]Scheduling job, id='https://westus2.experiments.azureml.net/subscriptions/ff2e23ae-7d7c-4cbd-99b8-116bb94dca6e/resourceGroups/RG-ITSMLTeam-Dev/providers/Microsoft.MachineLearningServices/workspaces/avadevitsmlsvc/experiments/attrition_pipe_anders/runs/attrition_pipe_anders_1554159585383_0'<END><START>[2019-04-01T23:00:18.7811517Z][SCHEDULER][INFO]Scheduling job, id='https://westus2.experiments.azureml.net/subscriptions/ff2e23ae-7d7c-4cbd-99b8-116bb94dca6e/resourceGroups/RG-ITSMLTeam-Dev/providers/Microsoft.MachineLearningServices/workspaces/avadevitsmlsvc/experiments/attrition_pipe_anders/runs/attrition_pipe_anders_1554159585383_2'<END><START>[2019-04-01T23:00:18.7824883Z][SCHEDULER][INFO]Scheduling job, id='https://westus2.experiments.azureml.net/subscriptions/ff2e23ae-7d7c-4cbd-99b8-116bb94dca6e/resourceGroups/RG-ITSMLTeam-Dev/providers/Microsoft.MachineLearningServices/workspaces/avadevitsmlsvc/experiments/attrition_pipe_anders/runs/attrition_pipe_anders_1554159585383_3'<END><START>[2019-04-01T23:00:18.7805792Z][SCHEDULER][INFO]Scheduling job, id='https://westus2.experiments.azureml.net/subscriptions/ff2e23ae-7d7c-4cbd-99b8-116bb94dca6e/resourceGroups/RG-ITSMLTeam-Dev/providers/Microsoft.MachineLearningServices/workspaces/avadevitsmlsvc/experiments/attrition_pipe_anders/runs/attrition_pipe_anders_1554159585383_1'<END><START>[2019-04-01T23:00:26.1672593Z][SCHEDULER][INFO]Successfully scheduled a job. Id='attrition_pipe_anders_1554159585383_1'<END><START>[2019-04-01T23:00:26.5002758Z][SCHEDULER][INFO]Successfully scheduled a job. Id='attrition_pipe_anders_1554159585383_0'<END><START>[2019-04-01T23:00:26.6051498Z][SCHEDULER][INFO]Successfully scheduled a job. Id='attrition_pipe_anders_1554159585383_2'<END><START>[2019-04-01T23:00:28.1865188Z][SCHEDULER][INFO]Successfully scheduled a job. Id='attrition_pipe_anders_1554159585383_3'<END>"<START>[2019-04-01T23:06:47.573411][CONTROLLER][INFO]Experiment was 'ExperimentStatus.RUNNING', is 'ExperimentStatus.FINISHED'.<END>\n"
#%% [markdown]
# # Deploy
#
# Use this notebook to deploy the latest model to a docker container.
#
# ## Pre-Requisites
#
# This notebook assumes that a model has been generated and is stored in the current directory as <project_name>.pkl.
#%%
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>") )
#%% [markdown]
# ## Setup development environment
#
# In order to run this notebook, you must first setup a Python virtual environment with the necessary packages and install the Azure ML SDK. Refer to the following link for more information:
# - https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#configure-jupyter-notebooks-on-your-own-computer
#
#%%
get_ipython().run_line_magic('matplotlib', 'inline')
import os, sys
sys.path.append(os.getcwd())
import azureml
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from azureml.core.authentication import InteractiveLoginAuthentication
from azureml.core.compute import AmlCompute, ComputeTarget, DataFactoryCompute
from azureml.core.datastore import Datastore
from azureml.core.runconfig import CondaDependencies, RunConfiguration, DataReferenceConfiguration, DEFAULT_GPU_IMAGE
from azureml.core import Experiment, Workspace, Run
from azureml.data.data_reference import DataReference
from azureml.exceptions import ComputeTargetException
from azureml.pipeline.core import Pipeline, PublishedPipeline, PipelineData, OutputPortBinding
from azureml.pipeline.steps import PythonScriptStep, DataTransferStep, EstimatorStep, HyperDriveStep
from azureml.train.estimator import Estimator
from azureml.train.hyperdrive import HyperDriveRunConfig, PrimaryMetricGoal, uniform, quniform, choice, RandomParameterSampling, BayesianParameterSampling, MedianStoppingPolicy
from azureml.widgets import RunDetails
print("Azure ML SDK Version: ", azureml.core.VERSION)
#%%
project_name = 'attrition_pipe_anders'
compute_target_name = 'dev-anders'
data_factory_name = 'adf'
#%%
interactive_auth = InteractiveLoginAuthentication(tenant_id="cf36141c-ddd7-45a7-b073-111f66d0b30c")
ws = Workspace.from_config(auth=interactive_auth)
print("Found workspace {} at location {}".format(ws.name, ws.location))
# create/get experiment
exp = Experiment(workspace=ws, name=project_name)
# Default datastore (Azure file storage)
def_file_store = ws.get_default_datastore()
print("Default datastore's name: {}".format(def_file_store.name))
def_blob_store = Datastore(ws, "workspaceblobstore")
print("Blobstore's name: {}".format(def_blob_store.name))
#%%
# Verify that cluster does not exist already
try:
compute_target = ComputeTarget(workspace=ws, name=compute_target_name)
print('Found existing cluster, use it.')
except ComputeTargetException:
compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',
max_nodes=4)
compute_target = ComputeTarget.create(ws, compute_target_name, compute_config)
compute_target.wait_for_completion(show_output=True)
#%%
def get_or_create_data_factory(workspace, factory_name):
try:
return DataFactoryCompute(workspace, factory_name)
except ComputeTargetException as e:
if 'ComputeTargetNotFound' in e.message:
print('Data factory not found, creating...')
provisioning_config = DataFactoryCompute.provisioning_configuration()
data_factory = ComputeTarget.create(workspace, factory_name, provisioning_config)
return data_factory
else:
raise e
data_factory_compute = get_or_create_data_factory(ws, data_factory_name)
print("setup data factory account complete")
#%%
batchai_run_config = RunConfiguration().load(path = './compute/', name = 'aml_compute')
#%%
# data references
input_dir = DataReference(data_reference_name='input_data', datastore=def_blob_store, path_on_datastore='attrition_pipe')
output_dir = DataReference(data_reference_name='output_data', datastore=def_blob_store, path_on_datastore='attrition_pipe/output')
munged_hc = PipelineData('munged_hc', datastore=def_blob_store)
munged_leaver = PipelineData('munged_leaver', datastore=def_blob_store)
munged_roster = PipelineData('munged_roster', datastore=def_blob_store)
munged_absence = PipelineData('munged_absence', datastore=def_blob_store)
munged_productivity = PipelineData('munged_productivity', datastore=def_blob_store)
munged_promo = PipelineData('munged_promo', datastore=def_blob_store)
munged_time = PipelineData('munged_time', datastore=def_blob_store)
munged_travel = PipelineData('munged_travel', datastore=def_blob_store)
batch_scoring_data = PipelineData('batch_scoring', datastore=def_blob_store)
hyperdrive_metrics = PipelineData('hyperdrive_metrics', datastore=def_blob_store)
processed_data1 = PipelineData('processed_data1', datastore=def_blob_store)
processed_data2 = PipelineData('processed_data2', datastore=def_blob_store)
split_data = PipelineData('split_data', datastore=def_blob_store)
tests_output = PipelineData('tests_output', datastore=def_blob_store)
#%%
munge_hc_step = PythonScriptStep(
name='munge headcount',
script_name='munge_headcount.py',
arguments=['--input_dir', input_dir,
'--output_dir', munged_hc],
compute_target=compute_target,
inputs=[input_dir],
outputs=[munged_hc],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_leaver_step = PythonScriptStep(
name='munge leaver',
script_name='munge_leaver.py',
arguments=['--input_dir', input_dir,
'--output_dir', munged_leaver],
compute_target=compute_target,
inputs=[input_dir],
outputs=[munged_leaver],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_roster_step = PythonScriptStep(
name='munge roster',
script_name='munge_roster.py',
arguments=['--input_dir', input_dir,
'--output_dir', munged_roster],
compute_target=compute_target,
inputs=[input_dir],
outputs=[munged_roster],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_absence_step = PythonScriptStep(
name='munge absence',
script_name='munge_absence.py',
arguments=['--input_dir', input_dir,
'--munged_hc_dir', munged_hc,
'--output_dir', munged_absence],
compute_target=compute_target,
inputs=[input_dir, munged_hc],
outputs=[munged_absence],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_productivity_step = PythonScriptStep(
name='munge productivity',
script_name='munge_productivity.py',
arguments=['--input_dir', input_dir,
'--munged_hc_dir', munged_hc,
'--output_dir', munged_productivity],
compute_target=compute_target,
inputs=[input_dir, munged_hc],
outputs=[munged_productivity],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_promo_step = PythonScriptStep(
name='munge promo',
script_name='munge_promo.py',
arguments=['--input_dir', input_dir,
'--munged_hc_dir', munged_hc,
'--output_dir', munged_promo],
compute_target=compute_target,
inputs=[input_dir, munged_hc],
outputs=[munged_promo],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_time_step = PythonScriptStep(
name='munge time',
script_name='munge_time.py',
arguments=['--input_dir', input_dir,
'--munged_hc_dir', munged_hc,
'--output_dir', munged_time],
compute_target=compute_target,
inputs=[input_dir, munged_hc],
outputs=[munged_time],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
munge_travel_step = PythonScriptStep(
name='munge travel',
script_name='munge_travel.py',
arguments=['--input_dir', input_dir,
'--munged_hc_dir', munged_hc,
'--output_dir', munged_travel],
compute_target=compute_target,
inputs=[input_dir, munged_hc],
outputs=[munged_travel],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
join_step = PythonScriptStep(
name='join',
script_name='join.py',
arguments=['--munged_hc_dir', munged_hc,
'--munged_roster_dir', munged_roster,
'--munged_absence_dir', munged_absence,
'--munged_leaver_dir', munged_leaver,
'--munged_productivity_dir', munged_productivity,
'--munged_promo_dir', munged_promo,
'--munged_time_dir', munged_time,
'--munged_travel_dir', munged_travel,
'--output_dir', processed_data2],
compute_target=compute_target,
inputs=[
munged_hc,
munged_roster,
munged_absence,
munged_leaver,
munged_productivity,
munged_promo,
munged_time,
munged_travel
],
outputs=[processed_data2],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
split_step = PythonScriptStep(
name='Split data',
script_name='get_data.py',
arguments=['--input_dir', processed_data2,
'--output_dir', split_data],
compute_target=compute_target,
inputs=[processed_data2],
outputs=[split_data],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
batch_scoring_step = PythonScriptStep(
name='Batch scoring',
script_name='batch_scoring.py',
arguments=[
'--context', 'remote',
'--model_name', 'attrition3_pipe_test',
'--dataset_path', split_data,
'--output_dir', batch_scoring_data],
compute_target=compute_target,
inputs=[split_data],
outputs=[batch_scoring_data],
runconfig=batchai_run_config,
source_directory=os.path.join(os.getcwd(), 'compute'),
allow_reuse=True
)
#%%
# hyperdrive config
est_config_aml = Estimator(
source_directory = "./compute",
entry_script= "train.py",
compute_target = compute_target,
environment_definition = batchai_run_config.environment
)
random_sampling = RandomParameterSampling( {
'boosting_type' : choice('gbdt', 'dart'),
'learning_rate': quniform(0.05, 0.1, 0.01),
'num_leaves': quniform(4, 20, 1),
"max_bin": quniform(50,300, 5),
"min_child_samples": quniform(20,200, 5)
} )
hyperdrive_run_config = HyperDriveRunConfig(
estimator=est_config_aml, # AML
hyperparameter_sampling=random_sampling,
primary_metric_name="geometric mean",
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
max_total_runs=4,
max_concurrent_runs=4)
hyperdrive_step = HyperDriveStep(
name='Hyperdrive',
hyperdrive_run_config = hyperdrive_run_config,
estimator_entry_script_arguments = [ "--input_dir", split_data, '--output_dir', hyperdrive_metrics],
inputs=[split_data],
metrics_output = hyperdrive_metrics,
allow_reuse=True
)
#%%
# save out intermediary files back to blob
transfer_gold_step = DataTransferStep(
name="transfer_gold",
source_data_reference=processed_data2,
destination_data_reference=output_dir,
source_reference_type='directory',
destination_reference_type='directory',
compute_target=data_factory_compute,
allow_reuse=True
)
transfer_output_step = DataTransferStep(
name="transfer_output",
source_data_reference=batch_scoring_data,
destination_data_reference=output_dir,
source_reference_type='directory',
destination_reference_type='directory',
compute_target=data_factory_compute,
allow_reuse=True
)
transfer_metrics_step = DataTransferStep(
name="transfer_metrics",
source_data_reference=hyperdrive_metrics,
destination_data_reference=output_dir,
source_reference_type='directory',
destination_reference_type='directory',
compute_target=data_factory_compute,
allow_reuse=True
)
#%%
pipeline = Pipeline(workspace=ws,
steps=[
# transfer_gold_step,
# transfer_output_step,
transfer_metrics_step
])
#%%
pipeline_run = Experiment(ws, project_name).submit(pipeline, pipeline_params={})
#%%
RunDetails(pipeline_run).show()
#%%
# pipeline_run.cancel()
#%%
pipeline_run
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment