Created
November 26, 2018 21:40
-
-
Save datalorax/bd51676e0edbd0cffcc5e72a698d64b8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Code from Richard McElreath's book, chapter 6 | |
sppnames <- c( "afarensis","africanus","habilis","boisei", | |
"rudolfensis","ergaster","sapiens") | |
brainvolcc <- c( 438 , 452 , 612, 521, 752, 871, 1350 ) | |
masskg <- c( 37.0 , 35.5 , 34.5 , 41.5 , 55.5 , 61.0 , 53.5 ) | |
d <- data.frame( species=sppnames , brain=brainvolcc , mass=masskg ) | |
## R code 6.2 | |
m6.1 <- lm( brain ~ mass , data=d ) | |
## R code 6.4 | |
m6.2 <- lm( brain ~ mass + I(mass^2) , data=d ) | |
## R code 6.5 | |
m6.3 <- lm( brain ~ mass + I(mass^2) + I(mass^3) , data=d ) | |
m6.4 <- lm( brain ~ mass + I(mass^2) + I(mass^3) + I(mass^4) , | |
data=d ) | |
m6.5 <- lm( brain ~ mass + I(mass^2) + I(mass^3) + I(mass^4) + | |
I(mass^5) , data=d ) | |
m6.6 <- lm( brain ~ mass + I(mass^2) + I(mass^3) + I(mass^4) + | |
I(mass^5) + I(mass^6) , data=d ) | |
#### My code to animate it | |
library(tidyverse) | |
library(gganimate) | |
#devtools::install_github("thomasp85/transformr") # May need this too | |
theme_set(theme_minimal(base_size = 15)) | |
mods <- list(m6.1, m6.2, m6.3, m6.4, m6.5, m6.6) | |
mod_preds <- map2_df(mods, seq_along(mods), | |
~data_frame(mass = seq(30, 65, 0.1), | |
title_lab = | |
paste0("Polynomial: ", .y, | |
"; R^2: ", | |
round(summary(.x)$r.squared, 2)), | |
pred = predict(.x, | |
newdata = | |
data.frame(mass = seq(30, 65, 0.1)))), | |
.id = "model") | |
ggplot(mod_preds, aes(mass, pred)) + | |
geom_line(color = "cornflowerblue", | |
lwd = 1.2) + | |
xlim(25, 62) + | |
ylim(-500, 2000) + | |
geom_hline(yintercept = 0, | |
lwd = 1.4, | |
lty = 2, | |
color = "firebrick") + | |
geom_point(aes(x = mass, y = brain), data = d) + | |
transition_states(model, | |
transition_length = 0.5, | |
state_length = 0.5) + | |
transition_states(title_lab, | |
transition_length = 0.5, | |
state_length = 0.5) + | |
labs(title = "{closest_state}", | |
x = "body mass (kg)", | |
y = "brain volume (cc)") |
Author
datalorax
commented
Nov 26, 2018
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment