Last active
June 5, 2021 12:17
-
-
Save dataprofessor/bc8227930d773ff40534d86d8d7933ac to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pickle | |
from sklearn.ensemble import RandomForestClassifier | |
st.write(""" | |
# Penguin Prediction App | |
This app predicts the **Palmer Penguin** species! | |
Data obtained from the [palmerpenguins library](https://github.com/allisonhorst/palmerpenguins) in R by Allison Horst. | |
""") | |
st.sidebar.header('User Input Features') | |
st.sidebar.markdown(""" | |
[Example CSV input file](https://raw.githubusercontent.com/dataprofessor/data/master/penguins_example.csv) | |
""") | |
# Collects user input features into dataframe | |
uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"]) | |
if uploaded_file is not None: | |
input_df = pd.read_csv(uploaded_file) | |
else: | |
def user_input_features(): | |
island = st.sidebar.selectbox('Island',('Biscoe','Dream','Torgersen')) | |
sex = st.sidebar.selectbox('Sex',('male','female')) | |
bill_length_mm = st.sidebar.slider('Bill length (mm)', 32.1,59.6,43.9) | |
bill_depth_mm = st.sidebar.slider('Bill depth (mm)', 13.1,21.5,17.2) | |
flipper_length_mm = st.sidebar.slider('Flipper length (mm)', 172.0,231.0,201.0) | |
body_mass_g = st.sidebar.slider('Body mass (g)', 2700.0,6300.0,4207.0) | |
data = {'island': island, | |
'bill_length_mm': bill_length_mm, | |
'bill_depth_mm': bill_depth_mm, | |
'flipper_length_mm': flipper_length_mm, | |
'body_mass_g': body_mass_g, | |
'sex': sex} | |
features = pd.DataFrame(data, index=[0]) | |
return features | |
input_df = user_input_features() | |
# Combines user input features with entire penguins dataset | |
# This will be useful for the encoding phase | |
penguins_raw = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/penguins_cleaned.csv') | |
penguins = penguins_raw.drop(columns=['species'], axis=1) | |
df = pd.concat([input_df,penguins],axis=0) | |
# Encoding of ordinal features | |
# https://www.kaggle.com/pratik1120/penguin-dataset-eda-classification-and-clustering | |
encode = ['sex','island'] | |
for col in encode: | |
dummy = pd.get_dummies(df[col], prefix=col) | |
df = pd.concat([df,dummy], axis=1) | |
del df[col] | |
df = df[:1] # Selects only the first row (the user input data) | |
# Displays the user input features | |
st.subheader('User Input features') | |
if uploaded_file is not None: | |
st.write(df) | |
else: | |
st.write('Awaiting CSV file to be uploaded. Currently using example input parameters (shown below).') | |
st.write(df) | |
# Reads in saved classification model | |
load_clf = pickle.load(open('penguins_clf.pkl', 'rb')) | |
# Apply model to make predictions | |
prediction = load_clf.predict(df) | |
prediction_proba = load_clf.predict_proba(df) | |
st.subheader('Prediction') | |
penguins_species = np.array(['Adelie','Chinstrap','Gentoo']) | |
st.write(penguins_species[prediction]) | |
st.subheader('Prediction Probability') | |
st.write(prediction_proba) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment