-
-
Save datatalking/e439f1166418aa493fb0e44d3d96a662 to your computer and use it in GitHub Desktop.
Simple python script to obtain CUDA device information
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
Outputs some information on CUDA-enabled devices on your computer, | |
including current memory usage. | |
It's a port of https://gist.github.com/f0k/0d6431e3faa60bffc788f8b4daa029b1 | |
from C to Python with ctypes, so it can run without compiling anything. Note | |
that this is a direct translation with no attempt to make the code Pythonic. | |
It's meant as a general demonstration on how to obtain CUDA device information | |
from Python without resorting to nvidia-smi or a compiled Python extension. | |
Author: Jan Schlüter | |
""" | |
import sys | |
import ctypes | |
# Some constants taken from cuda.h | |
CUDA_SUCCESS = 0 | |
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16 | |
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39 | |
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13 | |
CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36 | |
def ConvertSMVer2Cores(major, minor): | |
# Returns the number of CUDA cores per multiprocessor for a given | |
# Compute Capability version. There is no way to retrieve that via | |
# the API, so it needs to be hard-coded. | |
# See _ConvertSMVer2Cores in helper_cuda.h in NVIDIA's CUDA Samples. | |
return {(1, 0): 8, # Tesla | |
(1, 1): 8, | |
(1, 2): 8, | |
(1, 3): 8, | |
(2, 0): 32, # Fermi | |
(2, 1): 48, | |
(3, 0): 192, # Kepler | |
(3, 2): 192, | |
(3, 5): 192, | |
(3, 7): 192, | |
(5, 0): 128, # Maxwell | |
(5, 2): 128, | |
(5, 3): 128, | |
(6, 0): 64, # Pascal | |
(6, 1): 128, | |
(6, 2): 128, | |
(7, 0): 64, # Volta | |
(7, 2): 64, | |
(7, 5): 64, # Turing | |
}.get((major, minor), 0) | |
def main(): | |
libnames = ('libcuda.so', 'libcuda.dylib', 'cuda.dll') | |
for libname in libnames: | |
try: | |
cuda = ctypes.CDLL(libname) | |
except OSError: | |
continue | |
else: | |
break | |
else: | |
raise OSError("could not load any of: " + ' '.join(libnames)) | |
nGpus = ctypes.c_int() | |
name = b' ' * 100 | |
cc_major = ctypes.c_int() | |
cc_minor = ctypes.c_int() | |
cores = ctypes.c_int() | |
threads_per_core = ctypes.c_int() | |
clockrate = ctypes.c_int() | |
freeMem = ctypes.c_size_t() | |
totalMem = ctypes.c_size_t() | |
result = ctypes.c_int() | |
device = ctypes.c_int() | |
context = ctypes.c_void_p() | |
error_str = ctypes.c_char_p() | |
result = cuda.cuInit(0) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuInit failed with error code %d: %s" % (result, error_str.value.decode())) | |
return 1 | |
result = cuda.cuDeviceGetCount(ctypes.byref(nGpus)) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuDeviceGetCount failed with error code %d: %s" % (result, error_str.value.decode())) | |
return 1 | |
print("Found %d device(s)." % nGpus.value) | |
for i in range(nGpus.value): | |
result = cuda.cuDeviceGet(ctypes.byref(device), i) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuDeviceGet failed with error code %d: %s" % (result, error_str.value.decode())) | |
return 1 | |
print("Device: %d" % i) | |
if cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) == CUDA_SUCCESS: | |
print(" Name: %s" % (name.split(b'\0', 1)[0].decode())) | |
if cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) == CUDA_SUCCESS: | |
print(" Compute Capability: %d.%d" % (cc_major.value, cc_minor.value)) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(cores), CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device) == CUDA_SUCCESS: | |
print(" Multiprocessors: %d" % cores.value) | |
print(" CUDA Cores: %s" % (cores.value * ConvertSMVer2Cores(cc_major.value, cc_minor.value) or "unknown")) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(threads_per_core), CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, device) == CUDA_SUCCESS: | |
print(" Concurrent threads: %d" % (cores.value * threads_per_core.value)) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(clockrate), CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device) == CUDA_SUCCESS: | |
print(" GPU clock: %g MHz" % (clockrate.value / 1000.)) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(clockrate), CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device) == CUDA_SUCCESS: | |
print(" Memory clock: %g MHz" % (clockrate.value / 1000.)) | |
result = cuda.cuCtxCreate(ctypes.byref(context), 0, device) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuCtxCreate failed with error code %d: %s" % (result, error_str.value.decode())) | |
else: | |
result = cuda.cuMemGetInfo(ctypes.byref(freeMem), ctypes.byref(totalMem)) | |
if result == CUDA_SUCCESS: | |
print(" Total Memory: %ld MiB" % (totalMem.value / 1024**2)) | |
print(" Free Memory: %ld MiB" % (freeMem.value / 1024**2)) | |
else: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuMemGetInfo failed with error code %d: %s" % (result, error_str.value.decode())) | |
cuda.cuCtxDetach(context) | |
return 0 | |
if __name__=="__main__": | |
sys.exit(main()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment