Created
December 22, 2016 09:39
-
-
Save datitran/a003f93f9ee019897c1bcc6cde0be0f7 to your computer and use it in GitHub Desktop.
Test script for CUDA/cuDNN
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| np.random.seed(1337) | |
| from keras.datasets import mnist | |
| from keras.utils import np_utils | |
| from keras.models import Sequential | |
| from keras.layers.core import Dense, Dropout, Activation | |
| from keras.optimizers import RMSprop | |
| NB_CLASSES = 10 | |
| BATCH_SIZE = 128 | |
| NB_EPOCH = 20 | |
| def transform_data(data, nb_classes): | |
| (X_train, y_train), (X_test, y_test) = data | |
| X_train = X_train.reshape(60000, 784) | |
| X_test = X_test.reshape(10000, 784) | |
| X_train = X_train.astype("float32") | |
| X_test = X_test.astype("float32") | |
| X_train /= 255 | |
| X_test /= 255 | |
| y_train = np_utils.to_categorical(y_train, nb_classes) | |
| y_test = np_utils.to_categorical(y_test, nb_classes) | |
| return X_train, X_test, y_train, y_test | |
| def evaluate_model(X_train, X_test, y_train, y_test, batch_size, nb_epoch): | |
| model = Sequential() | |
| model.add(Dense(512, input_shape=(784,))) | |
| model.add(Activation("relu")) | |
| model.add(Dropout(0.2)) | |
| model.add(Dense(512)) | |
| model.add(Activation("relu")) | |
| model.add(Dropout(0.2)) | |
| model.add(Dense(10)) | |
| model.add(Activation("softmax")) | |
| model.compile(loss="categorical_crossentropy", | |
| optimizer=RMSprop(), | |
| metrics=["accuracy"]) | |
| model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, | |
| verbose=1, validation_data=(X_test, y_test)) | |
| results = model.evaluate(X_test, y_test, verbose=0) | |
| return results | |
| if __name__ == "__main__": | |
| X_train, X_test, y_train, y_test = transform_data(mnist.load_data(), | |
| NB_CLASSES) | |
| results = evaluate_model(X_train, X_test, y_train, y_test, | |
| BATCH_SIZE, NB_EPOCH) | |
| print(results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment