Created
February 2, 2018 18:52
-
-
Save datlife/2c39a1893e689130c9a18ff14ec452a0 to your computer and use it in GitHub Desktop.
Export pre-trained TF Object Detection API model to Tensorflow Serving
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Thiss script would convert a pre-trained TF model to a servable version for TF Serving. | |
A pre-trained model can be downloaded here | |
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo | |
Requirements: | |
* A directory contains pretrained model (can be download above). | |
* Edit three arguments `frozen_graph`, `model_name`, `base_dir` accordingly | |
Returns: | |
* A TF Servable model | |
""" | |
from __future__ import print_function | |
import os | |
import tensorflow as tf | |
# Load frozen graph utils | |
from tensorflow.python.util import compat | |
from tensorflow.python.platform import gfile | |
# TF Libraries to export model into .pb file | |
from tensorflow.python.client import session | |
from tensorflow.python.saved_model import signature_constants | |
from tensorflow.core.protobuf import rewriter_config_pb2 | |
from tensorflow.tools.graph_transforms import TransformGraph | |
# This is directory downloaded from official pretrained models zoo | |
frozen_graph = './detector/ssd_inception_v2_coco/frozen_inference_graph.pb' | |
# Name of the inference model. It is important to set the name properly. | |
# The client will need to know the exact model name in order to make a prediction request. | |
model_name = 'ssd_inception_v2_coco' | |
# Output the servable model. In this example, I save in the same directory. | |
base_dir = './detector' | |
def _main_(): | |
# ################# | |
# Setup export path | |
################### | |
version = 1 | |
output_dir = os.path.join(base_dir, model_name) | |
export_path = os.path.join(output_dir, str(version)) | |
# ###################### | |
# Interference Pipeline | |
# ###################### | |
input_names = 'image_tensor' | |
output_names = ['detection_boxes', 'detection_classes', 'detection_scores', 'num_detections'] | |
with tf.Session() as sess: | |
input_tensor = tf.placeholder(dtype=tf.uint8, shape=(None, None, None, 3), name=input_names) | |
# ################### | |
# load frozen graph | |
# ################### | |
graph_def = load_graph_from_pb(frozen_graph) | |
outputs = tf.import_graph_def(graph_def, | |
input_map={'image_tensor': input_tensor}, | |
return_elements=output_names, | |
name='') | |
outputs = [sess.graph.get_tensor_by_name(ops.name +':0')for ops in outputs] | |
outputs = dict(zip(output_names, outputs)) | |
# ##################### | |
# Quantize Frozen Model | |
# ##################### | |
transforms = ["add_default_attributes", | |
"quantize_weights", "round_weights", | |
"fold_batch_norms", "fold_old_batch_norms"] | |
quantized_graph = TransformGraph(input_graph_def=graph_def, | |
inputs=input_names, | |
outputs=output_names, | |
transforms=transforms) | |
# ##################### | |
# Export to TF Serving# | |
# ##################### | |
# Reference: https://github.com/tensorflow/models/tree/master/research/object_detection | |
with tf.Graph().as_default(): | |
tf.import_graph_def(quantized_graph, name='') | |
# Optimizing graph | |
rewrite_options = rewriter_config_pb2.RewriterConfig(optimize_tensor_layout=True) | |
rewrite_options.optimizers.append('pruning') | |
rewrite_options.optimizers.append('constfold') | |
rewrite_options.optimizers.append('layout') | |
graph_options = tf.GraphOptions(rewrite_options=rewrite_options, infer_shapes=True) | |
# Build model for TF Serving | |
config = tf.ConfigProto(graph_options=graph_options) | |
# @TODO: add XLA for higher performance (AOT for ARM, JIT for x86/GPUs) | |
# https://www.tensorflow.org/performance/xla/ | |
# config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 | |
with session.Session(config=config) as sess: | |
builder = tf.saved_model.builder.SavedModelBuilder(export_path) | |
tensor_info_inputs = {'inputs': tf.saved_model.utils.build_tensor_info(input_tensor)} | |
tensor_info_outputs = {} | |
for k, v in outputs.items(): | |
tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v) | |
detection_signature = ( | |
tf.saved_model.signature_def_utils.build_signature_def( | |
inputs = tensor_info_inputs, | |
outputs = tensor_info_outputs, | |
method_name= signature_constants.PREDICT_METHOD_NAME)) | |
builder.add_meta_graph_and_variables( | |
sess, [tf.saved_model.tag_constants.SERVING], | |
signature_def_map={'predict_images': detection_signature, | |
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: detection_signature, | |
}, | |
) | |
builder.save() | |
print("\n\nModel is ready for TF Serving. (saved at {}/saved_model.pb)".format(export_path)) | |
def load_graph_from_pb(model_filename): | |
with tf.Session() as sess: | |
with gfile.FastGFile(model_filename, 'rb') as f: | |
data = compat.as_bytes(f.read()) | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(data) | |
return graph_def | |
if __name__ == '__main__': | |
_main_() |
this does not create Variables.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I am not getting variables. by using this script