Last active
March 17, 2021 17:38
-
-
Save dauuricus/390e7efe6d87aa05d411f51139d42547 to your computer and use it in GitHub Desktop.
jupyter notebook or google colab
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import matplotlib.dates as mdates | |
import pandas as pd | |
plt.style.use('ggplot') | |
#mhlw1 = pd.read_csv("https://www.mhlw.go.jp/content/pcr_positive_daily.csv", parse_dates=['日付']) | |
#mhlw2 = pd.read_csv("https://www.mhlw.go.jp/content/death_total.csv", parse_dates=['日付']) | |
#!wget https://www.mhlw.go.jp/content/death_total.csv | |
mhlw2 = pd.read_csv("/content/death_total.csv", parse_dates=['日付']) | |
#mhlw3 = pd.read_csv("https://www.mhlw.go.jp/content/pcr_tested_daily.csv", parse_dates=['日付']) | |
#mhlw4 = pd.read_csv("https://www.mhlw.go.jp/content/severe_daily.csv", parse_dates=['日付']) | |
#nhk2 = pd.read_csv('https://www3.nhk.or.jp/n-data/opendata/coronavirus/nhk_news_covid19_domestic_daily_data.csv', parse_dates=['日付']) | |
#!wget https://www3.nhk.or.jp/n-data/opendata/coronavirus/nhk_news_covid19_domestic_daily_data.csv | |
nhk2 = pd.read_csv(r'/content/nhk_news_covid19_domestic_daily_data.csv', parse_dates=['日付']) | |
locator = mdates.AutoDateLocator() | |
formatter = mdates.ConciseDateFormatter(locator) | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
ax.xaxis.set_major_locator(locator) | |
ax.xaxis.set_major_formatter(formatter) | |
#mhlw1['日付'] = pd.to_datetime(mhlw1['日付']) | |
mhlw2['日付'] = pd.to_datetime(mhlw2['日付']) | |
nhk2['日付'] = pd.to_datetime(nhk2['日付']) | |
start = '2021-01-01' | |
end = '2021-03-17' | |
mask_mhlw2 = (mhlw2['日付'] >= pd.Timestamp(start)) & (mhlw2['日付'] <= pd.Timestamp(end)) | |
#mask_mhlw1 = (mhlw1['日付'] >= pd.Timestamp(start)) & (mhlw1['日付'] <= pd.Timestamp(end)) | |
mask_nhk = (nhk2['日付'] >= pd.Timestamp(start)) & (nhk2['日付'] <= pd.Timestamp(end)) | |
#print(mhlw2[mask],mhlw2[mask]['死亡者数'] - mhlw2[mask]['死亡者数'].shift()) | |
mhlw = mhlw2[mask_mhlw2] | |
#mhlw1 = mhlw1[mask_mhlw1] | |
nhk = nhk2[mask_nhk] | |
print(nhk2[mask_nhk]) | |
#print(mhlw1[mask_mhlw1]) | |
print(mhlw2[mask_mhlw2]) | |
#ax.plot(mhlw3['日付'], mhlw3['PCR 検査実施件数(単日)'],color='pink') | |
#ax.bar(mhlw1['日付'], mhlw1['PCR 検査陽性者数(単日)'],color='red') | |
#ax.bar(mhlw4['日付'], mhlw4['重症者数'],color='green') | |
#ax.bar(mhlw2['日付'], mhlw2['死亡者数'] - mhlw2['死亡者数'].shift(),color='red') | |
ax.bar(mhlw['日付'], mhlw['死亡者数'] - mhlw['死亡者数'].shift(),width=0.5,color='red') | |
ax.plot(nhk['日付'], nhk['国内の死者数_1日ごとの発表数'] , color='blue') | |
#ax.bar(nhk['日付'], nhk['国内の感染者数_1日ごとの発表数'] ,width =0.5, color='blue') | |
plt.savefig("graph.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment