Skip to content

Instantly share code, notes, and snippets.

@david-andrew
Created November 8, 2024 16:17
Show Gist options
  • Save david-andrew/51e1bd7dcd037d88423aa505a732606c to your computer and use it in GitHub Desktop.
Save david-andrew/51e1bd7dcd037d88423aa505a732606c to your computer and use it in GitHub Desktop.
PDC API Test example 0
>>> what apis are available?
thought: I will list all the available APIs to provide the user with the information they need.
tool: AdhocApi.list_apis
tool_input: None
observation: {'Proteomic Data Commons': {'description': "The Proteomics Data Commons (PDC) is a comprehensive, open-access resource that stores,\nmanages, and shares large-scale proteomic
data for cancer and other biomedical research.\nIt is part of the National Cancer Institute's broader data ecosystem, enabling researchers\nto access and analyze proteomic datasets, including
mass spectrometry data and related\nmetadata. The PDC supports integrative research by providing standardized data formats\nand analysis tools, facilitating the discovery of protein
biomarkers and insights into\ncancer biology, which helps in advancing personalized medicine and treatment approaches.\n"}}
thought: I have retrieved the list of available APIs. There is one API available:
tool: final_answer
tool_input: 1. Proteomic Data Commons: A comprehensive, open-access resource for storing, managing, and sharing large-scale proteomic data for cancer and other biomedical research. It
supports integrative research by providing standardized data formats and analysis tools.
1. Proteomic Data Commons: A comprehensive, open-access resource for storing, managing, and sharing large-scale proteomic data for cancer and other biomedical research. It supports integrative research by providing standardized data formats and analysis tools.
>>> can you make a request that will determine what the list of possible experiment types are
thought: To determine the list of possible experiment types, I will draft a request using the Proteomic Data Commons API.
tool: AdhocApi.use_api
tool_input: {'api': 'Proteomic Data Commons', 'goal': 'Determine the list of possible experiment types.'}
INFO {'api': 'Proteomic Data Commons', 'goal': 'Determine the list of possible experiment types.'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23690, min_total_token_count=32768. Running model without cache.'}
INFO {'draft_code': 'import requests\nimport json\nimport pandas as pd\nimport os\n\nurl = \'https://pdc.cancer.gov/graphql\'\nheaders = {"Content-Type": "application/json"}\n\n\nquery = """{\n uiFilters{\n experiment_type {\n filterValue\n }\n }\n }\n """\n \nr = requests.post(url, json={\'query\': query}, headers=headers)\njson_data = json.loads(r.text)\n\nexp_types = json_data[\'data\'][\'uiFilters\'][\'experiment_type\']\nexp_type_list = [x[\'filterValue\'] for x in exp_types]\nprint(exp_type_list)\n'}
INFO {'fixed_code': 'import requests\nimport json\nimport os\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\nurl = \'https://pdc.cancer.gov/graphql\'\nheaders = {"Content-Type": "application/json"}\n\nquery = """{\n uiFilters{\n experiment_type {\n filterValue\n }\n }\n }\n """\n\nr = requests.post(url, json={\'query\': query}, headers=headers)\njson_data = json.loads(r.text)\n\nexp_types = json_data[\'data\'][\'uiFilters\'][\'experiment_type\']\nexp_type_list = [x[\'filterValue\'] for x in exp_types]\nprint(exp_type_list)'}
INFO {'info': 'directly returning code'}
observation: import requests
import json
import os
# Ensure the data directory exists
os.makedirs('./data/', exist_ok=True)
url = 'https://pdc.cancer.gov/graphql'
headers = {"Content-Type": "application/json"}
query = """{
uiFilters{
experiment_type {
filterValue
}
}
}
"""
r = requests.post(url, json={'query': query}, headers=headers)
json_data = json.loads(r.text)
exp_types = json_data['data']['uiFilters']['experiment_type']
exp_type_list = [x['filterValue'] for x in exp_types]
print(exp_type_list)
thought: I have drafted and executed the request to determine the list of possible experiment types using the Proteomic Data Commons API.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport json\nimport os\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\nurl =
\'https://pdc.cancer.gov/graphql\'\nheaders = {"Content-Type": "application/json"}\n\nquery = """{\n uiFilters{\n experiment_type {\n filterValue\n }\n
}\n }\n """\n\nr = requests.post(url, json={\'query\': query}, headers=headers)\njson_data = json.loads(r.text)\n\nexp_types =
json_data[\'data\'][\'uiFilters\'][\'experiment_type\']\nexp_type_list = [x[\'filterValue\'] for x in exp_types]\nprint(exp_type_list)'}
observation: [['Oral Squamous Cell Carcinoma Study - Proteome', 'TCGA Breast Cancer CompRef Samples - Proteome', 'TCGA Ovarian CompRef Samples PNNL Proteome', 'TCGA Breast Cancer CompRef
Samples - Phosphoproteome', 'TCGA BRCA Proteome S015-1', 'TCGA BRCA Phosphoproteome S015-2', 'TCGA OV Glycoproteome S020-1', 'TCGA OV Proteome S020-2', 'TCGA OV Proteome S020-3', 'TCGA OV
Phosphoproteome S020-4', 'TCGA Ovarian CompRef Samples PNNL Phosphoproteome Velos Qexactive', 'Therapeutic Targets in Breast Cancer Xenografts - Phosphoproteome', 'Proteogenomics of Gastric
Cancer - Proteome', 'Proteogenomics of Gastric Cancer - Phosphoproteome', 'Proteogenomics of Gastric Cancer - Glycoproteome', 'Therapeutic Targets in Breast Cancer Xenografts - Proteome',
'TCGA Ovarian CompRef Samples JHU Proteome'], ['CPTAC CCRCC Confirmatory Study - DIA Intact Glycoproteome', 'CPTAC CCRCC Confirmatory Study - DIA Phosphoproteome', 'CPTAC GBM Discovery Study
- Metabolome', 'CPTAC CCRCC Discovery Study - DIA Proteome', 'CPTAC PDA Discovery Study - DIA Proteome', 'CPTAC PDAC Proteins in Serum - Proteome', 'VU Normal Colon Epithelium - Proteome',
'CPTAC GBM Discovery Study - Lipidome', 'CPTAC CCRCC Confirmatory Study - Validation - Metabolome', 'CPTAC Deep Proteomics 2D-DIA', 'CPTAC PDAC Proteins in Serum - Glycoproteome', 'TCGA
Colorectal Cancer CompRef Samples - Proteome', 'CPTAC CCRCC Confirmatory Study - Intratumor Heterogeneity - DIA Proteome', 'CPTAC CCRCC Confirmatory Study - Training - Metabolome',
'guo_kidney ST25730263', 'CPTAC non-ccRCC Study - Metabolome', 'CPTAC GBM Confirmatory Study - Metabolome', 'TCGA COAD Proteome S016-1', 'Prospective COAD Proteome S037-1', 'CPTAC CCRCC
Confirmatory Study - Kinase Inhibition - DIA Phosphoproteome', 'CPTAC GBM Confirmatory Study - Lipidome', 'CPTAC CCRCC Confirmatory Study - DIA Proteome', 'CPTAC PDAC BioTExt - Proteome'],
['Broad Institute - Medulloblastoma - Phosphoproteome', 'AML Ex Vivo Drug Response - Sorafenib Treatment - Phosphoproteome', 'Broad Institute - Medulloblastoma -
Phospho-tyrosine-enrichments', 'NCI-7 Cell Line Panel - Phosphoproteome', 'AML Ex Vivo Drug Response - Primary Cohort - Proteome', 'CPTAC LUAD Discovery Study - Acetylome', 'CPTAC LUAD
Discovery Study - CompRef Acetylome', 'CPTAC UCEC Discovery Study - Acetylome', 'CPTAC UCEC Discovery Study - CompRef Acetylome', 'Sampling techniques for enrichment of PDAC - Proteome', 'KU
PDAC Discovery Study - Global proteome', 'Prospective Ovarian JHU Intact Glycoproteome', 'NCI-7 Cell Line Panel - Proteome', 'Prospective Ovarian JHU Proteome v2', 'KU PDAC Discovery Study -
Phosphoproteome', 'NCI-7 Cell Line Panel Experimental Application - Proteome', 'Microscaled Proteogenomic Methods for Precision Oncology PDX bulk - Phosphoproteome', 'AML Ex Vivo Drug
Response - Sorafenib Treatment - Proteome', 'Reproducible Proteome and Phosphoproteome Workflow JHU - Phosphoproteome', 'Microscaled Proteogenomic Methods for Precision Oncology PDX bulk -
Proteome', 'Broad Institute - Medulloblastoma - Proteome', 'Academia Sinica LUAD100-Phosphoproteome', 'NCC iCC - Proteome', 'Academia Sinica LUAD100-Proteome v2', 'Prospective Breast BI
Acetylome', 'Prospective Breast BI - CompRef Acetylome', 'Prospective Breast BI Proteome v2', 'Prospective Breast BI - CompRef Proteome', 'Prospective Breast BI Phosphoproteome v2',
'Prospective Breast BI - CompRef Phosphoproteome', 'Reproducible Proteome and Phosphoproteome Workflow PNNL - Phosphoproteome', 'Prospective COAD Proteome S037-2', 'Prospective COAD
Phosphoproteome S037-3', 'Prospective OV Proteome S038-2', 'Prospective OV Phosphoproteome S038-3', 'Microscaled Proteogenomic Methods for Precision Oncology PDX cores - Phosphoproteome',
'UCEC Discovery - Proteome S043-1', 'UCEC Discovery - Phosphoproteome S043-2', 'AML Ex Vivo Drug Response - Primary Cohort - Phosphoproteome', 'Reproducible Proteome and Phosphoproteome
Workflow PNNL - Proteome', 'Broad Institute - Medulloblastoma - Acetylome', 'Reproducible Proteome and Phosphoproteome Workflow BI - Phosphoproteome', 'CPTAC CCRCC Discovery Study - Proteome
S044-1', 'CPTAC CCRCC Discovery Study - Phosphoproteome S044-2', 'UCEC Discovery - CompRef Proteome S043-1', 'UCEC Discovery - CompRef Phosphoproteome S043-2', 'CPTAC CCRCC Discovery Study -
CompRef Proteome S044-1', 'CPTAC CCRCC Discovery Study - CompRef Phosphoproteome S044-2', 'CPTAC LUAD Discovery Study - CompRef Proteome', 'CPTAC LUAD Discovery Study - CompRef
Phosphoproteome', 'Reproducible Proteome and Phosphoproteome Workflow BI - Proteome', 'CPTAC CCRCC Discovery Study - Intact Glycoproteome', 'Microscaled Proteogenomic Methods for Precision
Oncology PDX cores - Proteome', 'NCC iCC - Phosphoproteome', 'Reproducible Proteome and Phosphoproteome Workflow JHU - Proteome', 'Prospective Ovarian JHU N-linked Glycosite-containing
peptide v2', 'CPTAC LUAD Discovery Study - Proteome', 'CPTAC LUAD Discovery Study - Phosphoproteome'], ['AML Gilteritinib Resistance - Proteome', 'CPTAC UCEC Confirmatory Study -
Phosphoproteome', 'CPTAC GBM Discovery Study - CompRef Phosphoproteome', 'CPTAC UCEC Confirmatory Study - Glycoproteome', 'CPTAC GBM Confirmatory Study - CompRef Proteome', 'CPTAC LSCC
Discovery Study - Phosphoproteome', 'CPTAC LSCC Discovery Study - Acetylome', 'CPTAC LSCC Discovery Study - Proteome', 'PTRC HGSOC Frozen Validation - Proteome', 'PTRC HGSOC FFPE Discovery -
Phosphoproteome', 'CPTAC PDA Discovery Study - Proteome', 'PTRC TNBC - Phosphoproteome', 'PTRC HGSOC FFPE Validation - Phosphoproteome', 'Microscaled Proteogenomic Methods for Precision
Oncology DP1 Clinical Trial - Phosphoproteome', 'CPTAC UCEC Confirmatory Study - CompRef Phosphoproteome', 'AML Ex Vivo Drug Response - Combination Treatment - Phosphoproteome', 'AML
Gilteritinib Resistance - Phosphoproteome', 'HBV-Related Hepatocellular Carcinoma - Phosphoproteome', 'AML Gilteritinib TimeCourse - Proteome', 'CPTAC UCEC Confirmatory Study - Proteome',
'Beat AML Baseline Clinical - Proteome', 'CPTAC GBM Confirmatory Study - Glycoproteome', 'CPTAC GBM Confirmatory Study - CompRef Acetylome', 'CPTAC UCEC Confirmatory Study - CompRef
Acetylome', 'KNCC Glioblastoma Evolution - Proteome', 'CPTAC GBM Confirmatory Study - Acetylome', 'Pediatric Brain Cancer Pilot Study - Phosphoproteome', 'Pediatric Brain Cancer Pilot Study -
Proteome', 'Beat AML Baseline Clinical - Phosphoproteome', 'AML Quizartinib Resistance - Proteome', 'CPTAC UCEC Confirmatory Study - CompRef Proteome', 'CPTAC PDA Discovery Study -
Phosphoproteome', 'CPTAC UCEC Confirmatory Study - Acetylome', 'CPTAC non-ccRCC Study - Proteome', 'PTRC HGSOC Frozen Validation - Phosphoproteome', 'AML Quizartinib Resistance -
Phosphoproteome', 'APOLLO LUAD - Phosphoproteome - FeNTA', 'CPTAC HNSCC Discovery Study - Proteome', 'CPTAC HNSCC Discovery Study - Phosphoproteome', 'PTRC HGSOC FFPE Discovery - Proteome',
'PTRC TNBC - Proteome', 'CPTAC GBM Discovery Study - CompRef Proteome', 'PTRC HGSOC FFPE Validation - Proteome', 'CPTAC GBM Confirmatory Study - CompRef Phosphoproteome', 'PTRC TNBC PDX -
Proteome', 'CPTAC GBM Confirmatory Study - Proteome', 'CPTAC LSCC Discovery Study - Ubiquitylome', 'CPTAC GBM Discovery Study - Acetylome', 'CPTAC GBM Discovery Study - CompRef Acetylome',
'APOLLO LUAD - Proteome', 'APOLLO LUAD - Phosphoproteome - TiO2', 'Microscaled Proteogenomic Methods for Precision Oncology DP1 Clinical Trial - Proteome', 'CPTAC GBM Discovery Study -
Proteome', 'AML Gilteritinib TimeCourse - Phosphoproteome', 'AML Ex Vivo Drug Response - Combination Treatment - Proteome', 'CPTAC non-ccRCC Study - Intact Glycoproteome', 'CPTAC non-ccRCC
Study - Phosphoproteome', 'CPTAC GBM Confirmatory Study - Phosphoproteome', 'KNCC Glioblastoma Evolution - Phosphoproteome', 'CPTAC GBM Discovery Study - Phosphoproteome', 'HBV-Related
Hepatocellular Carcinoma - Proteome', 'CPTAC PDA Discovery Study - Intact Glycoproteome'], ['Georgetown Lung Cancer Proteomics Study'], ['Buparlisib Treated Xenograft Tumors of TNBC -
Proteome', 'Buparlisib Treated Xenograft Tumors of TNBC - Phosphoproteome']]
thought: I have successfully retrieved the list of possible experiment types from the Proteomic Data Commons API.
tool: final_answer
tool_input: The list of possible experiment types includes:
1. Oral Squamous Cell Carcinoma Study - Proteome
2. TCGA Breast Cancer CompRef Samples - Proteome
3. TCGA Ovarian CompRef Samples PNNL Proteome
4. TCGA Breast Cancer CompRef Samples - Phosphoproteome
5. TCGA BRCA Proteome S015-1
6. TCGA BRCA Phosphoproteome S015-2
7. TCGA OV Glycoproteome S020-1
8. TCGA OV Proteome S020-2
9. TCGA OV Proteome S020-3
10. TCGA OV Phosphoproteome S020-4
11. TCGA Ovarian CompRef Samples PNNL Phosphoproteome Velos Qexactive
12. Therapeutic Targets in Breast Cancer Xenografts - Phosphoproteome
13. Proteogenomics of Gastric Cancer - Proteome
14. Proteogenomics of Gastric Cancer - Phosphoproteome
15. Proteogenomics of Gastric Cancer - Glycoproteome
16. Therapeutic Targets in Breast Cancer Xenografts - Proteome
17. TCGA Ovarian CompRef Samples JHU Proteome
18. CPTAC CCRCC Confirmatory Study - DIA Intact Glycoproteome
19. CPTAC CCRCC Confirmatory Study - DIA Phosphoproteome
20. CPTAC GBM Discovery Study - Metabolome
21. CPTAC CCRCC Discovery Study - DIA Proteome
22. CPTAC PDA Discovery Study - DIA Proteome
23. CPTAC PDAC Proteins in Serum - Proteome
24. VU Normal Colon Epithelium - Proteome
25. CPTAC GBM Discovery Study - Lipidome
26. CPTAC CCRCC Confirmatory Study - Validation - Metabolome
27. CPTAC Deep Proteomics 2D-DIA
28. CPTAC PDAC Proteins in Serum - Glycoproteome
29. TCGA Colorectal Cancer CompRef Samples - Proteome
30. CPTAC CCRCC Confirmatory Study - Intratumor Heterogeneity - DIA Proteome
31. CPTAC CCRCC Confirmatory Study - Training - Metabolome
32. guo_kidney ST25730263
33. CPTAC non-ccRCC Study - Metabolome
34. CPTAC GBM Confirmatory Study - Metabolome
35. TCGA COAD Proteome S016-1
36. Prospective COAD Proteome S037-1
37. CPTAC CCRCC Confirmatory Study - Kinase Inhibition - DIA Phosphoproteome
38. CPTAC GBM Confirmatory Study - Lipidome
39. CPTAC CCRCC Confirmatory Study - DIA Proteome
40. CPTAC PDAC BioTExt - Proteome
41. Broad Institute - Medulloblastoma - Phosphoproteome
42. AML Ex Vivo Drug Response - Sorafenib Treatment - Phosphoproteome
43. Broad Institute - Medulloblastoma - Phospho-tyrosine-enrichments
44. NCI-7 Cell Line Panel - Phosphoproteome
45. AML Ex Vivo Drug Response - Primary Cohort - Proteome
46. CPTAC LUAD Discovery Study - Acetylome
47. CPTAC LUAD Discovery Study - CompRef Acetylome
48. CPTAC UCEC Discovery Study - Acetylome
49. CPTAC UCEC Discovery Study - CompRef Acetylome
50. Sampling techniques for enrichment of PDAC - Proteome
51. KU PDAC Discovery Study - Global proteome
52. Prospective Ovarian JHU Intact Glycoproteome
53. NCI-7 Cell Line Panel - Proteome
54. Prospective Ovarian JHU Proteome v2
55. KU PDAC Discovery Study - Phosphoproteome
56. NCI-7 Cell Line Panel Experimental Application - Proteome
57. Microscaled Proteogenomic Methods for Precision Oncology PDX bulk - Phosphoproteome
58. AML Ex Vivo Drug Response - Sorafenib Treatment - Proteome
59. Reproducible Proteome and Phosphoproteome Workflow JHU - Phosphoproteome
60. Microscaled Proteogenomic Methods for Precision Oncology PDX bulk - Proteome
61. Broad Institute - Medulloblastoma - Proteome
62. Academia Sinica LUAD100-Phosphoproteome
63. NCC iCC - Proteome
64. Academia Sinica LUAD100-Proteome v2
65. Prospective Breast BI Acetylome
66. Prospective Breast BI - CompRef Acetylome
67. Prospective Breast BI Proteome v2
68. Prospective Breast BI - CompRef Proteome
69. Prospective Breast BI Phosphoproteome v2
70. Prospective Breast BI - CompRef Phosphoproteome
71. Reproducible Proteome and Phosphoproteome Workflow PNNL - Phosphoproteome
72. Prospective COAD Proteome S037-2
73. Prospective COAD Phosphoproteome S037-3
74. Prospective OV Proteome S038-2
75. Prospective OV Phosphoproteome S038-3
76. Microscaled Proteogenomic Methods for Precision Oncology PDX cores - Phosphoproteome
77. UCEC Discovery - Proteome S043-1
78. UCEC Discovery - Phosphoproteome S043-2
79. AML Ex Vivo Drug Response - Primary Cohort - Phosphoproteome
80. Reproducible Proteome and Phosphoproteome Workflow PNNL - Proteome
81. Broad Institute - Medulloblastoma - Acetylome
82. Reproducible Proteome and Phosphoproteome Workflow BI - Phosphoproteome
83. CPTAC CCRCC Discovery Study - Proteome S044-1
84. CPTAC CCRCC Discovery Study - Phosphoproteome S044-2
85. UCEC Discovery - CompRef Proteome S043-1
86. UCEC Discovery - CompRef Phosphoproteome S043-2
87. CPTAC CCRCC Discovery Study - CompRef Proteome S044-1
88. CPTAC CCRCC Discovery Study - CompRef Phosphoproteome S044-2
89. CPTAC LUAD Discovery Study - CompRef Proteome
90. CPTAC LUAD Discovery Study - CompRef Phosphoproteome
91. Reproducible Proteome and Phosphoproteome Workflow BI - Proteome
92. CPTAC CCRCC Discovery Study - Intact Glycoproteome
93. Microscaled Proteogenomic Methods for Precision Oncology PDX cores - Proteome
94. NCC iCC - Phosphoproteome
95. Reproducible Proteome and Phosphoproteome Workflow JHU - Proteome
96. Prospective Ovarian JHU N-linked Glycosite-containing peptide v2
97. CPTAC LUAD Discovery Study - Proteome
98. CPTAC LUAD Discovery Study - Phosphoproteome
99. AML Gilteritinib Resistance - Proteome
100. CPTAC UCEC Confirmatory Study - Phosphoproteome
101. CPTAC GBM Discovery Study - CompRef Phosphoproteome
102. CPTAC UCEC Confirmatory Study - Glycoproteome
103. CPTAC GBM Confirmatory Study - CompRef Proteome
104. CPTAC LSCC Discovery Study - Phosphoproteome
105. CPTAC LSCC Discovery Study - Acetylome
106. CPTAC LSCC Discovery Study - Proteome
107. PTRC HGSOC Frozen Validation - Proteome
108. PTRC HGSOC FFPE Discovery - Phosphoproteome
109. CPTAC PDA Discovery Study - Proteome
110. PTRC TNBC - Phosphoproteome
111. PTRC HGSOC FFPE Validation - Phosphoproteome
112. Microscaled Proteogenomic Methods for Precision Oncology DP1 Clinical Trial - Phosphoproteome
113. CPTAC UCEC Confirmatory Study - CompRef Phosphoproteome
114. AML Ex Vivo Drug Response - Combination Treatment - Phosphoproteome
115. AML Gilteritinib Resistance - Phosphoproteome
116. HBV-Related Hepatocellular Carcinoma - Phosphoproteome
117. AML Gilteritinib TimeCourse - Proteome
118. CPTAC UCEC Confirmatory Study - Proteome
119. Beat AML Baseline Clinical - Proteome
120. CPTAC GBM Confirmatory Study - Glycoproteome
121. CPTAC GBM Confirmatory Study - CompRef Acetylome
122. CPTAC UCEC Confirmatory Study - CompRef Acetylome
123. KNCC Glioblastoma Evolution - Proteome
124. CPTAC GBM Confirmatory Study - Acetylome
125. Pediatric Brain Cancer Pilot Study - Phosphoproteome
126. Pediatric Brain Cancer Pilot Study - Proteome
127. Beat AML Baseline Clinical - Phosphoproteome
128. AML Quizartinib Resistance - Proteome
129. CPTAC UCEC Confirmatory Study - CompRef Proteome
130. CPTAC PDA Discovery Study - Phosphoproteome
131. CPTAC UCEC Confirmatory Study - Acetylome
132. CPTAC non-ccRCC Study - Proteome
133. PTRC HGSOC Frozen Validation - Phosphoproteome
134. AML Quizartinib Resistance - Phosphoproteome
135. APOLLO LUAD - Phosphoproteome - FeNTA
136. CPTAC HNSCC Discovery Study - Proteome
137. CPTAC HNSCC Discovery Study - Phosphoproteome
138. PTRC HGSOC FFPE Discovery - Proteome
139. PTRC TNBC - Proteome
140. CPTAC GBM Discovery Study - CompRef Proteome
141. PTRC HGSOC FFPE Validation - Proteome
142. CPTAC GBM Confirmatory Study - CompRef Phosphoproteome
143. PTRC TNBC PDX - Proteome
144. CPTAC GBM Confirmatory Study - Proteome
145. CPTAC LSCC Discovery Study - Ubiquitylome
146. CPTAC GBM Discovery Study - Acetylome
147. CPTAC GBM Discovery Study - CompRef Acetylome
148. APOLLO LUAD - Proteome
149. APOLLO LUAD - Phosphoproteome - TiO2
150. Microscaled Proteogenomic Methods for Precision Oncology DP1 Clinical Trial - Proteome
151. CPTAC GBM Discovery Study - Proteome
152. AML Gilteritinib TimeCourse - Phosphoproteome
153. AML Ex Vivo Drug Response - Combination Treatment - Proteome
154. CPTAC non-ccRCC Study - Intact Glycoproteome
155. CPTAC non-ccRCC Study - Phosphoproteome
156. CPTAC GBM Confirmatory Study - Phosphoproteome
157. KNCC Glioblastoma Evolution - Phosphoproteome
158. CPTAC GBM Discovery Study - Phosphoproteome
159. HBV-Related Hepatocellular Carcinoma - Proteome
160. CPTAC PDA Discovery Study - Intact Glycoproteome
161. Georgetown Lung Cancer Proteomics Study
162. Buparlisib Treated Xenograft Tumors of TNBC - Proteome
163. Buparlisib Treated Xenograft Tumors of TNBC - Phosphoproteome
The list of possible experiment types includes:
1. Oral Squamous Cell Carcinoma Study - Proteome
2. TCGA Breast Cancer CompRef Samples - Proteome
3. TCGA Ovarian CompRef Samples PNNL Proteome
4. TCGA Breast Cancer CompRef Samples - Phosphoproteome
5. TCGA BRCA Proteome S015-1
6. TCGA BRCA Phosphoproteome S015-2
7. TCGA OV Glycoproteome S020-1
8. TCGA OV Proteome S020-2
9. TCGA OV Proteome S020-3
10. TCGA OV Phosphoproteome S020-4
11. TCGA Ovarian CompRef Samples PNNL Phosphoproteome Velos Qexactive
12. Therapeutic Targets in Breast Cancer Xenografts - Phosphoproteome
13. Proteogenomics of Gastric Cancer - Proteome
14. Proteogenomics of Gastric Cancer - Phosphoproteome
15. Proteogenomics of Gastric Cancer - Glycoproteome
16. Therapeutic Targets in Breast Cancer Xenografts - Proteome
17. TCGA Ovarian CompRef Samples JHU Proteome
18. CPTAC CCRCC Confirmatory Study - DIA Intact Glycoproteome
19. CPTAC CCRCC Confirmatory Study - DIA Phosphoproteome
20. CPTAC GBM Discovery Study - Metabolome
21. CPTAC CCRCC Discovery Study - DIA Proteome
22. CPTAC PDA Discovery Study - DIA Proteome
23. CPTAC PDAC Proteins in Serum - Proteome
24. VU Normal Colon Epithelium - Proteome
25. CPTAC GBM Discovery Study - Lipidome
26. CPTAC CCRCC Confirmatory Study - Validation - Metabolome
27. CPTAC Deep Proteomics 2D-DIA
28. CPTAC PDAC Proteins in Serum - Glycoproteome
29. TCGA Colorectal Cancer CompRef Samples - Proteome
30. CPTAC CCRCC Confirmatory Study - Intratumor Heterogeneity - DIA Proteome
31. CPTAC CCRCC Confirmatory Study - Training - Metabolome
32. guo_kidney ST25730263
33. CPTAC non-ccRCC Study - Metabolome
34. CPTAC GBM Confirmatory Study - Metabolome
35. TCGA COAD Proteome S016-1
36. Prospective COAD Proteome S037-1
37. CPTAC CCRCC Confirmatory Study - Kinase Inhibition - DIA Phosphoproteome
38. CPTAC GBM Confirmatory Study - Lipidome
39. CPTAC CCRCC Confirmatory Study - DIA Proteome
40. CPTAC PDAC BioTExt - Proteome
41. Broad Institute - Medulloblastoma - Phosphoproteome
42. AML Ex Vivo Drug Response - Sorafenib Treatment - Phosphoproteome
43. Broad Institute - Medulloblastoma - Phospho-tyrosine-enrichments
44. NCI-7 Cell Line Panel - Phosphoproteome
45. AML Ex Vivo Drug Response - Primary Cohort - Proteome
46. CPTAC LUAD Discovery Study - Acetylome
47. CPTAC LUAD Discovery Study - CompRef Acetylome
48. CPTAC UCEC Discovery Study - Acetylome
49. CPTAC UCEC Discovery Study - CompRef Acetylome
50. Sampling techniques for enrichment of PDAC - Proteome
51. KU PDAC Discovery Study - Global proteome
52. Prospective Ovarian JHU Intact Glycoproteome
53. NCI-7 Cell Line Panel - Proteome
54. Prospective Ovarian JHU Proteome v2
55. KU PDAC Discovery Study - Phosphoproteome
56. NCI-7 Cell Line Panel Experimental Application - Proteome
57. Microscaled Proteogenomic Methods for Precision Oncology PDX bulk - Phosphoproteome
58. AML Ex Vivo Drug Response - Sorafenib Treatment - Proteome
59. Reproducible Proteome and Phosphoproteome Workflow JHU - Phosphoproteome
60. Microscaled Proteogenomic Methods for Precision Oncology PDX bulk - Proteome
61. Broad Institute - Medulloblastoma - Proteome
62. Academia Sinica LUAD100-Phosphoproteome
63. NCC iCC - Proteome
64. Academia Sinica LUAD100-Proteome v2
65. Prospective Breast BI Acetylome
66. Prospective Breast BI - CompRef Acetylome
67. Prospective Breast BI Proteome v2
68. Prospective Breast BI - CompRef Proteome
69. Prospective Breast BI Phosphoproteome v2
70. Prospective Breast BI - CompRef Phosphoproteome
71. Reproducible Proteome and Phosphoproteome Workflow PNNL - Phosphoproteome
72. Prospective COAD Proteome S037-2
73. Prospective COAD Phosphoproteome S037-3
74. Prospective OV Proteome S038-2
75. Prospective OV Phosphoproteome S038-3
76. Microscaled Proteogenomic Methods for Precision Oncology PDX cores - Phosphoproteome
77. UCEC Discovery - Proteome S043-1
78. UCEC Discovery - Phosphoproteome S043-2
79. AML Ex Vivo Drug Response - Primary Cohort - Phosphoproteome
80. Reproducible Proteome and Phosphoproteome Workflow PNNL - Proteome
81. Broad Institute - Medulloblastoma - Acetylome
82. Reproducible Proteome and Phosphoproteome Workflow BI - Phosphoproteome
83. CPTAC CCRCC Discovery Study - Proteome S044-1
84. CPTAC CCRCC Discovery Study - Phosphoproteome S044-2
85. UCEC Discovery - CompRef Proteome S043-1
86. UCEC Discovery - CompRef Phosphoproteome S043-2
87. CPTAC CCRCC Discovery Study - CompRef Proteome S044-1
88. CPTAC CCRCC Discovery Study - CompRef Phosphoproteome S044-2
89. CPTAC LUAD Discovery Study - CompRef Proteome
90. CPTAC LUAD Discovery Study - CompRef Phosphoproteome
91. Reproducible Proteome and Phosphoproteome Workflow BI - Proteome
92. CPTAC CCRCC Discovery Study - Intact Glycoproteome
93. Microscaled Proteogenomic Methods for Precision Oncology PDX cores - Proteome
94. NCC iCC - Phosphoproteome
95. Reproducible Proteome and Phosphoproteome Workflow JHU - Proteome
96. Prospective Ovarian JHU N-linked Glycosite-containing peptide v2
97. CPTAC LUAD Discovery Study - Proteome
98. CPTAC LUAD Discovery Study - Phosphoproteome
99. AML Gilteritinib Resistance - Proteome
100. CPTAC UCEC Confirmatory Study - Phosphoproteome
101. CPTAC GBM Discovery Study - CompRef Phosphoproteome
102. CPTAC UCEC Confirmatory Study - Glycoproteome
103. CPTAC GBM Confirmatory Study - CompRef Proteome
104. CPTAC LSCC Discovery Study - Phosphoproteome
105. CPTAC LSCC Discovery Study - Acetylome
106. CPTAC LSCC Discovery Study - Proteome
107. PTRC HGSOC Frozen Validation - Proteome
108. PTRC HGSOC FFPE Discovery - Phosphoproteome
109. CPTAC PDA Discovery Study - Proteome
110. PTRC TNBC - Phosphoproteome
111. PTRC HGSOC FFPE Validation - Phosphoproteome
112. Microscaled Proteogenomic Methods for Precision Oncology DP1 Clinical Trial - Phosphoproteome
113. CPTAC UCEC Confirmatory Study - CompRef Phosphoproteome
114. AML Ex Vivo Drug Response - Combination Treatment - Phosphoproteome
115. AML Gilteritinib Resistance - Phosphoproteome
116. HBV-Related Hepatocellular Carcinoma - Phosphoproteome
117. AML Gilteritinib TimeCourse - Proteome
118. CPTAC UCEC Confirmatory Study - Proteome
119. Beat AML Baseline Clinical - Proteome
120. CPTAC GBM Confirmatory Study - Glycoproteome
121. CPTAC GBM Confirmatory Study - CompRef Acetylome
122. CPTAC UCEC Confirmatory Study - CompRef Acetylome
123. KNCC Glioblastoma Evolution - Proteome
124. CPTAC GBM Confirmatory Study - Acetylome
125. Pediatric Brain Cancer Pilot Study - Phosphoproteome
126. Pediatric Brain Cancer Pilot Study - Proteome
127. Beat AML Baseline Clinical - Phosphoproteome
128. AML Quizartinib Resistance - Proteome
129. CPTAC UCEC Confirmatory Study - CompRef Proteome
130. CPTAC PDA Discovery Study - Phosphoproteome
131. CPTAC UCEC Confirmatory Study - Acetylome
132. CPTAC non-ccRCC Study - Proteome
133. PTRC HGSOC Frozen Validation - Phosphoproteome
134. AML Quizartinib Resistance - Phosphoproteome
135. APOLLO LUAD - Phosphoproteome - FeNTA
136. CPTAC HNSCC Discovery Study - Proteome
137. CPTAC HNSCC Discovery Study - Phosphoproteome
138. PTRC HGSOC FFPE Discovery - Proteome
139. PTRC TNBC - Proteome
140. CPTAC GBM Discovery Study - CompRef Proteome
141. PTRC HGSOC FFPE Validation - Proteome
142. CPTAC GBM Confirmatory Study - CompRef Phosphoproteome
143. PTRC TNBC PDX - Proteome
144. CPTAC GBM Confirmatory Study - Proteome
145. CPTAC LSCC Discovery Study - Ubiquitylome
146. CPTAC GBM Discovery Study - Acetylome
147. CPTAC GBM Discovery Study - CompRef Acetylome
148. APOLLO LUAD - Proteome
149. APOLLO LUAD - Phosphoproteome - TiO2
150. Microscaled Proteogenomic Methods for Precision Oncology DP1 Clinical Trial - Proteome
151. CPTAC GBM Discovery Study - Proteome
152. AML Gilteritinib TimeCourse - Phosphoproteome
153. AML Ex Vivo Drug Response - Combination Treatment - Proteome
154. CPTAC non-ccRCC Study - Intact Glycoproteome
155. CPTAC non-ccRCC Study - Phosphoproteome
156. CPTAC GBM Confirmatory Study - Phosphoproteome
157. KNCC Glioblastoma Evolution - Phosphoproteome
158. CPTAC GBM Discovery Study - Phosphoproteome
159. HBV-Related Hepatocellular Carcinoma - Proteome
160. CPTAC PDA Discovery Study - Intact Glycoproteome
161. Georgetown Lung Cancer Proteomics Study
162. Buparlisib Treated Xenograft Tumors of TNBC - Proteome
163. Buparlisib Treated Xenograft Tumors of TNBC - Phosphoproteome
>>> Find patient cases with tumor samples with both processed protein abundance data (this does not need to include abundance data for phosphorylated or acetylated forms) and genomic data for identifying single nucleotide polymorphisms (either whole genome sequencing data or genotyping array data). Download metadata about these patient cases, specimens, processed protein abundance data files, and genomic data files.
thought: To fulfill this request, I need to use the Proteomic Data Commons API to find patient cases with the specified criteria and download the relevant metadata and data files.
tool: AdhocApi.use_api
tool_input: {'api': 'Proteomic Data Commons', 'goal': 'Find patient cases with tumor samples that have both processed protein abundance data and genomic data for identifying single nucleotide
polymorphisms. Download metadata about these patient cases, specimens, processed protein abundance data files, and genomic data files.'}
INFO {'api': 'Proteomic Data Commons', 'goal': 'Find patient cases with tumor samples that have both processed protein abundance data and genomic data for identifying single nucleotide polymorphisms. Download metadata about these patient cases, specimens, processed protein abundance data files, and genomic data files.'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23690, min_total_token_count=32768. Running model without cache.'}
INFO {'draft_code': 'import requests\nimport json\nimport os\n\n# Base URL for the Proteomic Data Commons GraphQL API\nbase_url = "https://pdc.cancer.gov/graphql"\n\n# GraphQL query to find cases with both proteomics and SNP data\nquery = """\n{\n cases {\n case_id\n samples {\n sample_id\n files {\n file_id\n data_category\n platform\n }\n }\n }\n}\n"""\n\n# Make the API request\nresponse = requests.post(base_url, json={"query": query})\n\n# Check for successful response\nif response.status_code == 200:\n data = json.loads(response.text)\n\n # Extract case and file information\n cases_with_both_data = []\n for case in data["data"]["cases"]:\n case_id = case["case_id"]\n samples = case["samples"]\n\n # Check if the case has both proteomics and SNP data\n has_proteomics = False\n has_snp = False\n for sample in samples:\n sample_id = sample["sample_id"]\n files = sample["files"]\n for file in files:\n if file["data_category"] == "Protein Expression Quantification" and file["platform"] == "Mass Spectrometry":\n has_proteomics = True\n if file["data_category"] == "Single Nucleotide Variation":\n has_snp = True\n\n # If both data types are found, add the case and sample info\n if has_proteomics and has_snp:\n cases_with_both_data.append({"case_id": case_id, "sample_id": sample_id})\n break # Move on to the next case once both data types are found\n\n # Print the cases with both data types\n print(f"Found {len(cases_with_both_data)} cases with both proteomics and SNP data:")\n for case in cases_with_both_data:\n print(case)\n\n # TODO: Add logic to download metadata and files for the identified cases and samples\n # For example, you can use the case_id and sample_id to query the API for more details\n # and use the file_id to download the actual data files.\n\nelse:\n print(f"Error: API request failed with status code {response.status_code}")'}
INFO {'fixed_code': 'import requests\nimport json\nimport os\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Base URL for the Proteomic Data Commons GraphQL API\nbase_url = "https://pdc.cancer.gov/graphql"\n\n# GraphQL query to find cases with both proteomics and SNP data\nquery = """\n{\n cases {\n case_id\n samples {\n sample_id\n files {\n file_id\n data_category\n platform\n }\n }\n }\n}\n"""\n\n# Make the API request\nresponse = requests.post(base_url, json={"query": query})\n\n# Check for successful response\nif response.status_code == 200:\n data = json.loads(response.text)\n\n # Extract case and file information\n cases_with_both_data = []\n for case in data["data"]["cases"]:\n case_id = case["case_id"]\n samples = case["samples"]\n\n # Check if the case has both proteomics and SNP data\n has_proteomics = False\n has_snp = False\n for sample in samples:\n sample_id = sample["sample_id"]\n files = sample["files"]\n for file in files:\n if file["data_category"] == "Protein Expression Quantification" and file["platform"] == "Mass Spectrometry":\n has_proteomics = True\n if file["data_category"] == "Single Nucleotide Variation":\n has_snp = True\n\n # If both data types are found, add the case and sample info\n if has_proteomics and has_snp:\n cases_with_both_data.append({"case_id": case_id, "sample_id": sample_id})\n break # Move on to the next case once both data types are found\n\n # Print the cases with both data types\n print(f"Found {len(cases_with_both_data)} cases with both proteomics and SNP data:")\n for case in cases_with_both_data:\n print(case)\n\n # TODO: Add logic to download metadata and files for the identified cases and samples\n # For example, you can use the case_id and sample_id to query the API for more details\n # and use the file_id to download the actual data files.\n\nelse:\n print(f"Error: API request failed with status code {response.status_code}")'}
INFO {'info': 'directly returning code'}
observation: import requests
import json
import os
# Ensure the data directory exists
os.makedirs('./data/', exist_ok=True)
# Base URL for the Proteomic Data Commons GraphQL API
base_url = "https://pdc.cancer.gov/graphql"
# GraphQL query to find cases with both proteomics and SNP data
query = """
{
cases {
case_id
samples {
sample_id
files {
file_id
data_category
platform
}
}
}
}
"""
# Make the API request
response = requests.post(base_url, json={"query": query})
# Check for successful response
if response.status_code == 200:
data = json.loads(response.text)
# Extract case and file information
cases_with_both_data = []
for case in data["data"]["cases"]:
case_id = case["case_id"]
samples = case["samples"]
# Check if the case has both proteomics and SNP data
has_proteomics = False
has_snp = False
for sample in samples:
sample_id = sample["sample_id"]
files = sample["files"]
for file in files:
if file["data_category"] == "Protein Expression Quantification" and file["platform"] == "Mass Spectrometry":
has_proteomics = True
if file["data_category"] == "Single Nucleotide Variation":
has_snp = True
# If both data types are found, add the case and sample info
if has_proteomics and has_snp:
cases_with_both_data.append({"case_id": case_id, "sample_id": sample_id})
break # Move on to the next case once both data types are found
# Print the cases with both data types
print(f"Found {len(cases_with_both_data)} cases with both proteomics and SNP data:")
for case in cases_with_both_data:
print(case)
# TODO: Add logic to download metadata and files for the identified cases and samples
# For example, you can use the case_id and sample_id to query the API for more details
# and use the file_id to download the actual data files.
else:
print(f"Error: API request failed with status code {response.status_code}")
thought: I have drafted and executed the request to find patient cases with both processed protein abundance data and genomic data for identifying single nucleotide polymorphisms. Now, I will
run the code to get the results.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport json\nimport os\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Base URL for the Proteomic Data Commons
GraphQL API\nbase_url = "https://pdc.cancer.gov/graphql"\n\n# GraphQL query to find cases with both proteomics and SNP data\nquery = """\n{\n cases {\n case_id\n samples {\n
sample_id\n files {\n file_id\n data_category\n platform\n }\n }\n }\n}\n"""\n\n# Make the API request\nresponse = requests.post(base_url, json={"query":
query})\n\n# Check for successful response\nif response.status_code == 200:\n data = json.loads(response.text)\n\n # Extract case and file information\n cases_with_both_data = []\n
for case in data["data"]["cases"]:\n case_id = case["case_id"]\n samples = case["samples"]\n\n # Check if the case has both proteomics and SNP data\n
has_proteomics = False\n has_snp = False\n for sample in samples:\n sample_id = sample["sample_id"]\n files = sample["files"]\n for file in
files:\n if file["data_category"] == "Protein Expression Quantification" and file["platform"] == "Mass Spectrometry":\n has_proteomics = True\n
if file["data_category"] == "Single Nucleotide Variation":\n has_snp = True\n\n # If both data types are found, add the case and sample info\n if
has_proteomics and has_snp:\n cases_with_both_data.append({"case_id": case_id, "sample_id": sample_id})\n break # Move on to the next case once both data types
are found\n\n # Print the cases with both data types\n print(f"Found {len(cases_with_both_data)} cases with both proteomics and SNP data:")\n for case in cases_with_both_data:\n
print(case)\n\n # TODO: Add logic to download metadata and files for the identified cases and samples\n # For example, you can use the case_id and sample_id to query the API for more
details\n # and use the file_id to download the actual data files.\n\nelse:\n print(f"Error: API request failed with status code {response.status_code}")'}
observation: Error: API request failed with status code 400
thought: The API request failed with a status code 400, indicating a bad request. I need to investigate the query and correct any issues.
tool: AdhocApi.ask_api
tool_input: {'api': 'Proteomic Data Commons', 'query': 'What is the correct GraphQL query format to find patient cases with both processed protein abundance data and genomic data for
identifying single nucleotide polymorphisms?'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23617, min_total_token_count=32768. Running model without cache.'}
observation: The provided schema doesn't contain enough information to directly answer your request. In order to construct a query that satisfies your request, more information is required
regarding how protein abundance data and genomic data are linked to the case id. For instance, we need to know what fields or object types connect these data types.
However, I can outline a general approach and provide a template query assuming some hypothetical connections:
**Assumptions:**
* **Data Category Connection:** Let's assume there is a field `data_categories` within the `uiCaseSummary` object that lists the data categories available for a case.
* **Data Category Values:** And, the values within `data_categories` could be "Proteomic Profiling" for processed protein abundance and "Single Nucleotide Variation" for SNP data.
**Template Query:**
```graphql
query FilteredStudiesData($case_id: String!, $source: String!) {
uiCaseSummary(case_id: $case_id, source: $source) {
case_id
data_categories # Hypothetical field to retrieve data categories
# ... other fields you need
}
}
```
**Logic:**
1. **Query `uiCaseSummary`:** We start with the `uiCaseSummary` object, as it seems to hold comprehensive information about a case.
2. **Retrieve `data_categories`:** This hypothetical field would return a list of available data categories for the given case.
3. **Filter in your application:** You would then need to process the results of this query in your Python application. Iterate through the returned `data_categories` and identify cases that
have both "Proteomic Profiling" and "Single Nucleotide Variation".
**To refine this query:**
* **Provide more context:** Explain how protein abundance data and SNP data are structured and linked in the API. Are there specific file types, object relationships, or other fields that
indicate this information?
* **Specify desired fields:** Let me know what specific data points you need from cases matching your criteria.
Once I have more information, I can help you craft a more precise and effective GraphQL query.
thought: The API response indicates that I need more information about how protein abundance data and genomic data are linked to the case ID in the Proteomic Data Commons API. I will ask the
user for more context.
tool: ask_user
tool_input: {'query': 'Could you provide more context on how protein abundance data and genomic data are structured and linked in the API? Are there specific file types, object relationships,
or other fields that indicate this information?'}
Could you provide more context on how protein abundance data and genomic data are structured and linked in the API? Are there specific file types, object relationships, or other fields that indicate this information? $ I don't know. have the api look up possible fields
observation: I don't know. have the api look up possible fields
thought: I will ask the API to provide information about possible fields related to protein abundance data and genomic data in the Proteomic Data Commons API.
tool: AdhocApi.ask_api
tool_input: {'api': 'Proteomic Data Commons', 'query': 'What are the possible fields related to protein abundance data and genomic data in the API schema?'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23617, min_total_token_count=32768. Running model without cache.'}
observation: The PDC API, as it's currently presented in the schema, focuses heavily on clinical and file-related data rather than directly providing protein abundance or genomic data points.
However, there are fields that give clues about how to access related information:
**For Protein Abundance:**
* **`spectral_counts` within the `uiProtein` and `uiGeneSpectralCount` queries:** These fields seem to provide spectral count data, a proxy for protein abundance, linked to specific genes or
proteins. You can query based on gene name or protein name.
* Example fields within `spectral_counts`:
* `project_submitter_id`: Identifies the project.
* `plex`: Multiplexing information.
* `spectral_count`: The actual spectral count value.
* `distinct_peptide`: Number of distinct peptides identified.
* `unshared_peptide`: Number of unshared peptides identified.
**For Genomic Data:**
* The API schema itself **doesn't directly expose genomic data** like mutation or expression profiles.
* **`file_name` and `file_type` within various file queries:** You can potentially filter for files containing genomic data based on their names or types (e.g., "vcf" for variant files, "bam"
for alignment files). However, you'd then need to download and analyze these files separately.
**To get a more definitive answer on accessing specific protein abundance or genomic data points, you might need to:**
* **Explore the PDC website:** Check for documentation beyond the provided schema.
* **Contact the PDC support:** They can provide the most accurate guidance on data availability and access methods.
Let me know if you have other questions or would like me to draft example queries related to the existing protein abundance fields.
thought: The API schema provides some fields related to protein abundance and genomic data. I will draft a query to explore these fields further and identify cases with both data types.
tool: AdhocApi.use_api
tool_input: {'api': 'Proteomic Data Commons', 'goal': 'Draft a query to explore fields related to protein abundance (using spectral counts) and genomic data (using file names and types) to
identify cases with both data types.'}
INFO {'api': 'Proteomic Data Commons', 'goal': 'Draft a query to explore fields related to protein abundance (using spectral counts) and genomic data (using file names and types) to identify cases with both data types.'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23690, min_total_token_count=32768. Running model without cache.'}
INFO {'draft_code': 'import requests\nimport json\nimport pandas as pd\nimport os\n\ndef pdc_graphql_query(query_text):\n """\n This function sends a GraphQL query to the PDC API and returns the JSON response.\n\n Args:\n query_text (str): The GraphQL query.\n\n Returns:\n dict: The JSON response from the PDC API.\n """\n\n api_url = "https://pdc.cancer.gov/graphql"\n response = requests.post(api_url, json={\'query\': query_text})\n\n if response.status_code == 200:\n return response.json()\n else:\n raise Exception(f"Query failed with code {response.status_code}: {response.text}")\n\n# GraphQL query to fetch protein abundance (spectral counts) and genomic data\nquery = """{\n cases {\n case_id\n samples {\n sample_id\n files {\n file_id\n file_name\n data_category\n }\n }\n geneSpectralCounts {\n gene_id\n spectral_counts {\n spectral_count\n }\n }\n }\n}\n"""\n\n# Execute the query\nresponse = pdc_graphql_query(query)\n\n# Extract data and create DataFrames\ncases_df = pd.json_normalize(response[\'data\'][\'cases\'])\n\n# Explode files and spectral counts to get individual rows per file and gene\ncases_df = cases_df.explode(\'samples\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'samples\'].apply(pd.Series)], axis=1).drop(\'samples\', axis=1)\ncases_df = cases_df.explode(\'files\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'files\'].apply(pd.Series)], axis=1).drop(\'files\', axis=1)\ncases_df = cases_df.explode(\'geneSpectralCounts\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'geneSpectralCounts\'].apply(pd.Series)], axis=1).drop(\'geneSpectralCounts\', axis=1)\n\n# Filter for cases with both genomic and proteomic data\ncases_with_both_data = cases_df[cases_df[\'data_category\'].notna() & cases_df[\'spectral_count\'].notna()]\n\n# Print or process the results\nprint(cases_with_both_data[[\'case_id\', \'sample_id\', \'file_id\', \'file_name\', \'data_category\', \'gene_id\', \'spectral_count\']])'}
INFO {'fixed_code': 'import requests\nimport pandas as pd\nimport os\n\ndef pdc_graphql_query(query_text):\n """\n This function sends a GraphQL query to the PDC API and returns the JSON response.\n\n Args:\n query_text (str): The GraphQL query.\n\n Returns:\n dict: The JSON response from the PDC API.\n """\n\n api_url = "https://pdc.cancer.gov/graphql"\n response = requests.post(api_url, json={\'query\': query_text})\n\n if response.status_code == 200:\n return response.json()\n else:\n raise Exception(f"Query failed with code {response.status_code}: {response.text}")\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# GraphQL query to fetch protein abundance (spectral counts) and genomic data\nquery = """{\n cases {\n case_id\n samples {\n sample_id\n files {\n file_id\n file_name\n data_category\n }\n }\n geneSpectralCounts {\n gene_id\n spectral_counts {\n spectral_count\n }\n }\n }\n}\n"""\n\n# Execute the query\nresponse = pdc_graphql_query(query)\n\n# Extract data and create DataFrames\ncases_df = pd.json_normalize(response[\'data\'][\'cases\'])\n\n# Explode files and spectral counts to get individual rows per file and gene\ncases_df = cases_df.explode(\'samples\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'samples\'].apply(pd.Series)], axis=1).drop(\'samples\', axis=1)\ncases_df = cases_df.explode(\'files\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'files\'].apply(pd.Series)], axis=1).drop(\'files\', axis=1)\ncases_df = cases_df.explode(\'geneSpectralCounts\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'geneSpectralCounts\'].apply(pd.Series)], axis=1).drop(\'geneSpectralCounts\', axis=1)\n\n# Filter for cases with both genomic and proteomic data\ncases_with_both_data = cases_df[cases_df[\'data_category\'].notna() & cases_df[\'spectral_count\'].notna()]\n\n# Print or process the results\nprint(cases_with_both_data[[\'case_id\', \'sample_id\', \'file_id\', \'file_name\', \'data_category\', \'gene_id\', \'spectral_count\']])'}
INFO {'info': 'directly returning code'}
observation: import requests
import pandas as pd
import os
def pdc_graphql_query(query_text):
"""
This function sends a GraphQL query to the PDC API and returns the JSON response.
Args:
query_text (str): The GraphQL query.
Returns:
dict: The JSON response from the PDC API.
"""
api_url = "https://pdc.cancer.gov/graphql"
response = requests.post(api_url, json={'query': query_text})
if response.status_code == 200:
return response.json()
else:
raise Exception(f"Query failed with code {response.status_code}: {response.text}")
# Ensure the data directory exists
os.makedirs('./data/', exist_ok=True)
# GraphQL query to fetch protein abundance (spectral counts) and genomic data
query = """{
cases {
case_id
samples {
sample_id
files {
file_id
file_name
data_category
}
}
geneSpectralCounts {
gene_id
spectral_counts {
spectral_count
}
}
}
}
"""
# Execute the query
response = pdc_graphql_query(query)
# Extract data and create DataFrames
cases_df = pd.json_normalize(response['data']['cases'])
# Explode files and spectral counts to get individual rows per file and gene
cases_df = cases_df.explode('samples', ignore_index=True)
cases_df = pd.concat([cases_df, cases_df['samples'].apply(pd.Series)], axis=1).drop('samples', axis=1)
cases_df = cases_df.explode('files', ignore_index=True)
cases_df = pd.concat([cases_df, cases_df['files'].apply(pd.Series)], axis=1).drop('files', axis=1)
cases_df = cases_df.explode('geneSpectralCounts', ignore_index=True)
cases_df = pd.concat([cases_df, cases_df['geneSpectralCounts'].apply(pd.Series)], axis=1).drop('geneSpectralCounts', axis=1)
# Filter for cases with both genomic and proteomic data
cases_with_both_data = cases_df[cases_df['data_category'].notna() & cases_df['spectral_count'].notna()]
# Print or process the results
print(cases_with_both_data[['case_id', 'sample_id', 'file_id', 'file_name', 'data_category', 'gene_id', 'spectral_count']])
thought: I have drafted the query to explore fields related to protein abundance and genomic data. Now, I will run the code to get the results.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport pandas as pd\nimport os\n\ndef pdc_graphql_query(query_text):\n """\n This function sends a GraphQL query to the PDC API and returns the
JSON response.\n\n Args:\n query_text (str): The GraphQL query.\n\n Returns:\n dict: The JSON response from the PDC API.\n """\n\n api_url =
"https://pdc.cancer.gov/graphql"\n response = requests.post(api_url, json={\'query\': query_text})\n\n if response.status_code == 200:\n return response.json()\n else:\n
raise Exception(f"Query failed with code {response.status_code}: {response.text}")\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# GraphQL query to fetch
protein abundance (spectral counts) and genomic data\nquery = """{\n cases {\n case_id\n samples {\n sample_id\n files {\n file_id\n file_name\n
data_category\n }\n }\n geneSpectralCounts {\n gene_id\n spectral_counts {\n spectral_count\n }\n }\n }\n}\n"""\n\n# Execute the query\nresponse =
pdc_graphql_query(query)\n\n# Extract data and create DataFrames\ncases_df = pd.json_normalize(response[\'data\'][\'cases\'])\n\n# Explode files and spectral counts to get individual rows per
file and gene\ncases_df = cases_df.explode(\'samples\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'samples\'].apply(pd.Series)], axis=1).drop(\'samples\',
axis=1)\ncases_df = cases_df.explode(\'files\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'files\'].apply(pd.Series)], axis=1).drop(\'files\', axis=1)\ncases_df =
cases_df.explode(\'geneSpectralCounts\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'geneSpectralCounts\'].apply(pd.Series)], axis=1).drop(\'geneSpectralCounts\',
axis=1)\n\n# Filter for cases with both genomic and proteomic data\ncases_with_both_data = cases_df[cases_df[\'data_category\'].notna() & cases_df[\'spectral_count\'].notna()]\n\n# Print or
process the results\nprint(cases_with_both_data[[\'case_id\', \'sample_id\', \'file_id\', \'file_name\', \'data_category\', \'gene_id\', \'spectral_count\']])'}
error: error running tool "PythonTool.run": Query failed with code 400: {"errors":[{"message":"Cannot query field \"cases\" on type \"Query\". Did you mean \"case\", \"allCases\", or
\"uiCase\"?","extensions":{"code":"GRAPHQL_VALIDATION_FAILED","exception":{"stacktrace":["GraphQLError: Cannot query field \"cases\" on type \"Query\". Did you mean \"case\", \"allCases\", or
\"uiCase\"?"," at Object.Field (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/rules/FieldsOnCorrectTypeRule.js:48:31)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:323:29)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/utilities/TypeInfo.js:370:25)"," at visit (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:243:26)"," at
validate (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/validate.js:69:24)"," at validate
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:477:27)"," at processGraphQLRequest
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:267:32)"," at runMicrotasks (<anonymous>)"," at processTicksAndRejections
(internal/process/task_queues.js:95:5)"," at processHTTPRequest (/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/runHttpQuery.ts:437:24)"]}}}]}
thought: The error indicates that the field "cases" is not valid in the query. I need to correct the query by using a valid field such as "case", "allCases", or "uiCase".
tool: AdhocApi.ask_api
tool_input: {'api': 'Proteomic Data Commons', 'query': 'What is the correct field to use for querying case information in the API? Should I use "case", "allCases", or "uiCase"?'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23617, min_total_token_count=32768. Running model without cache.'}
observation: The correct field to use for querying a single case in the PDC API is **`uiCase`**.
Here's why:
* **`case`**: This field doesn't seem to exist in the provided schema.
* **`allCases`**: While this field likely exists (though not in the provided documentation), it would probably be used to retrieve a list of cases, not information about a specific case.
* **`uiCase`**: This field specifically targets a single case based on provided parameters like `case_id`, `case_submitter_id`, and `source`. This makes it the appropriate choice for
querying information about a particular case.
**Example:**
```graphql
query CaseSummaryDataQuery($case_id: String!, $case_submitter_id: String!, $source: String!){
uiCase (case_id: $case_id, case_submitter_id: $case_submitter_id, source: $source) {
# ... fields you want to retrieve about the case
}
}
```
Let me know if you'd like me to draft a Python script to make this query using the `requests` library!
thought: I will correct the query by using the "uiCase" field to retrieve case information and execute the query again.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport pandas as pd\nimport os\n\n# Function to send a GraphQL query to the PDC API\n\ndef pdc_graphql_query(query_text):\n api_url =
"https://pdc.cancer.gov/graphql"\n response = requests.post(api_url, json={\'query\': query_text})\n\n if response.status_code == 200:\n return response.json()\n else:\n
raise Exception(f"Query failed with code {response.status_code}: {response.text}")\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# GraphQL query to fetch
protein abundance (spectral counts) and genomic data\nquery = """\n{\n uiCase {\n case_id\n samples {\n sample_id\n files {\n file_id\n file_name\n
data_category\n }\n }\n geneSpectralCounts {\n gene_id\n spectral_counts {\n spectral_count\n }\n }\n }\n}\n"""\n\n# Execute the query\nresponse =
pdc_graphql_query(query)\n\n# Extract data and create DataFrames\ncases_df = pd.json_normalize(response[\'data\'][\'uiCase\'])\n\n# Explode files and spectral counts to get individual rows
per file and gene\ncases_df = cases_df.explode(\'samples\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'samples\'].apply(pd.Series)], axis=1).drop(\'samples\',
axis=1)\ncases_df = cases_df.explode(\'files\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'files\'].apply(pd.Series)], axis=1).drop(\'files\', axis=1)\ncases_df =
cases_df.explode(\'geneSpectralCounts\', ignore_index=True)\ncases_df = pd.concat([cases_df, cases_df[\'geneSpectralCounts\'].apply(pd.Series)], axis=1).drop(\'geneSpectralCounts\',
axis=1)\n\n# Filter for cases with both genomic and proteomic data\ncases_with_both_data = cases_df[cases_df[\'data_category\'].notna() & cases_df[\'spectral_count\'].notna()]\n\n# Print or
process the results\nprint(cases_with_both_data[[\'case_id\', \'sample_id\', \'file_id\', \'file_name\', \'data_category\', \'gene_id\', \'spectral_count\']])'}
error: error running tool "PythonTool.run": Query failed with code 400: {"errors":[{"message":"Cannot query field \"samples\" on type \"UICase\". Did you mean
\"sample_id\"?","extensions":{"code":"GRAPHQL_VALIDATION_FAILED","exception":{"stacktrace":["GraphQLError: Cannot query field \"samples\" on type \"UICase\". Did you mean \"sample_id\"?","
at Object.Field (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/rules/FieldsOnCorrectTypeRule.js:48:31)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:323:29)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/utilities/TypeInfo.js:370:25)"," at visit (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:243:26)"," at
validate (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/validate.js:69:24)"," at validate
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:477:27)"," at processGraphQLRequest
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:267:32)"," at runMicrotasks (<anonymous>)"," at processTicksAndRejections
(internal/process/task_queues.js:95:5)"," at processHTTPRequest (/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/runHttpQuery.ts:437:24)"]}}},{"message":"Cannot query
field \"geneSpectralCounts\" on type \"UICase\".","extensions":{"code":"GRAPHQL_VALIDATION_FAILED","exception":{"stacktrace":["GraphQLError: Cannot query field \"geneSpectralCounts\" on type
\"UICase\"."," at Object.Field (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/rules/FieldsOnCorrectTypeRule.js:48:31)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:323:29)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/utilities/TypeInfo.js:370:25)"," at visit (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:243:26)"," at
validate (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/validate.js:69:24)"," at validate
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:477:27)"," at processGraphQLRequest
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:267:32)"," at runMicrotasks (<anonymous>)"," at processTicksAndRejections
(internal/process/task_queues.js:95:5)"," at processHTTPRequest (/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/runHttpQuery.ts:437:24)"]}}}]}
thought: The error indicates that the fields "samples" and "geneSpectralCounts" are not valid for the "UICase" type. I need to ask the API for the correct fields to query for sample and
spectral count information.
tool: AdhocApi.ask_api
tool_input: {'api': 'Proteomic Data Commons', 'query': 'What are the correct fields to query for sample and spectral count information in the UICase type?'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23617, min_total_token_count=32768. Running model without cache.'}
observation: The `UICase` type itself doesn't directly contain sample and spectral count information. You'll need to traverse through related fields to access that data.
Here's a breakdown:
1. **Samples:** The `UICase` type has a field called `samples` which returns a list of `UISample` objects.
2. **Spectral Counts:** Spectral count information is associated with genes, not directly with samples or cases. To find spectral counts, you would use a different query type like
`uiGeneSpectralCount`.
You can find more information on the specific fields within the `UISample` type by referring to the provided schema. Look for `query SampleDataQuery` to see how to query for sample
information.
thought: I will draft a query using the correct fields to access sample and spectral count information through the UICase type and related queries.
tool: AdhocApi.use_api
tool_input: {'api': 'Proteomic Data Commons', 'goal': 'Draft a query to access sample information through the UICase type and spectral count information using the uiGeneSpectralCount query.'}
INFO {'api': 'Proteomic Data Commons', 'goal': 'Draft a query to access sample information through the UICase type and spectral count information using the uiGeneSpectralCount query.'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23690, min_total_token_count=32768. Running model without cache.'}
INFO {'draft_code': 'import requests\nimport json\n\ndef get_case_and_spectral_counts(case_id, gene_name):\n """\n Gets case information and spectral counts for a given case ID and gene name.\n\n Args:\n case_id: The case ID to query.\n gene_name: The gene name to query.\n\n Returns:\n A dictionary containing the case information and spectral counts,\n or None if the query fails.\n """\n\n url = \'https://pdc.cancer.gov/graphql\'\n\n query = """\n query CaseAndSpectralCounts($case_id: String!, $gene_name: String!) {\n uiCase(case_id: $case_id) {\n case_id\n case_submitter_id\n project_name\n disease_type\n primary_site\n samples {\n sample_id\n sample_type\n }\n }\n uiGeneSpectralCount(gene_name: $gene_name) {\n gene_id\n gene_name\n spectral_counts {\n project_submitter_id\n plex\n spectral_count\n }\n }\n }\n """\n\n variables = {\n \'case_id\': case_id,\n \'gene_name\': gene_name,\n }\n\n response = requests.post(url, json={\'query\': query, \'variables\': variables})\n\n if response.status_code == 200:\n return json.loads(response.text)[\'data\']\n else:\n print(f"Query failed with code {response.status_code}: {response.text}")\n return None\n\n# Example usage:\ncase_id = "your_case_id" # Replace with the actual case ID\ngene_name = "EGFR" # Replace with the actual gene name\n\ndata = get_case_and_spectral_counts(case_id, gene_name)\n\nif data:\n print(json.dumps(data, indent=2))'}
INFO {'fixed_code': 'import requests\nimport json\nimport os\n\ndef get_case_and_spectral_counts(case_id, gene_name):\n """\n Gets case information and spectral counts for a given case ID and gene name.\n\n Args:\n case_id: The case ID to query.\n gene_name: The gene name to query.\n\n Returns:\n A dictionary containing the case information and spectral counts,\n or None if the query fails.\n """\n\n url = \'https://pdc.cancer.gov/graphql\'\n\n query = """\n query CaseAndSpectralCounts($case_id: String!, $gene_name: String!) {\n uiCase(case_id: $case_id) {\n case_id\n case_submitter_id\n project_name\n disease_type\n primary_site\n samples {\n sample_id\n sample_type\n }\n }\n uiGeneSpectralCount(gene_name: $gene_name) {\n gene_id\n gene_name\n spectral_counts {\n project_submitter_id\n plex\n spectral_count\n }\n }\n }\n """\n\n variables = {\n \'case_id\': case_id,\n \'gene_name\': gene_name,\n }\n\n response = requests.post(url, json={\'query\': query, \'variables\': variables})\n\n if response.status_code == 200:\n return json.loads(response.text)[\'data\']\n else:\n print(f"Query failed with code {response.status_code}: {response.text}")\n return None\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Example usage:\ncase_id = "your_case_id" # Replace with the actual case ID\ngene_name = "EGFR" # Replace with the actual gene name\n\ndata = get_case_and_spectral_counts(case_id, gene_name)\n\nif data:\n print(json.dumps(data, indent=2))'}
INFO {'info': 'directly returning code'}
observation: import requests
import json
import os
def get_case_and_spectral_counts(case_id, gene_name):
"""
Gets case information and spectral counts for a given case ID and gene name.
Args:
case_id: The case ID to query.
gene_name: The gene name to query.
Returns:
A dictionary containing the case information and spectral counts,
or None if the query fails.
"""
url = 'https://pdc.cancer.gov/graphql'
query = """
query CaseAndSpectralCounts($case_id: String!, $gene_name: String!) {
uiCase(case_id: $case_id) {
case_id
case_submitter_id
project_name
disease_type
primary_site
samples {
sample_id
sample_type
}
}
uiGeneSpectralCount(gene_name: $gene_name) {
gene_id
gene_name
spectral_counts {
project_submitter_id
plex
spectral_count
}
}
}
"""
variables = {
'case_id': case_id,
'gene_name': gene_name,
}
response = requests.post(url, json={'query': query, 'variables': variables})
if response.status_code == 200:
return json.loads(response.text)['data']
else:
print(f"Query failed with code {response.status_code}: {response.text}")
return None
# Ensure the data directory exists
os.makedirs('./data/', exist_ok=True)
# Example usage:
case_id = "your_case_id" # Replace with the actual case ID
gene_name = "EGFR" # Replace with the actual gene name
data = get_case_and_spectral_counts(case_id, gene_name)
if data:
print(json.dumps(data, indent=2))
thought: I have drafted a query to access sample information through the UICase type and spectral count information using the uiGeneSpectralCount query. Now, I will run the code to get the
results.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport json\nimport os\n\ndef get_case_and_spectral_counts(case_id, gene_name):\n """\n Gets case information and spectral counts for a given case
ID and gene name.\n\n Args:\n case_id: The case ID to query.\n gene_name: The gene name to query.\n\n Returns:\n A dictionary containing the case information and
spectral counts,\n or None if the query fails.\n """\n\n url = \'https://pdc.cancer.gov/graphql\'\n\n query = """\n query CaseAndSpectralCounts($case_id: String!,
$gene_name: String!) {\n uiCase(case_id: $case_id) {\n case_id\n case_submitter_id\n project_name\n disease_type\n primary_site\n samples {\n
sample_id\n sample_type\n }\n }\n uiGeneSpectralCount(gene_name: $gene_name) {\n gene_id\n gene_name\n spectral_counts {\n
project_submitter_id\n plex\n spectral_count\n }\n }\n }\n """\n\n variables = {\n \'case_id\': case_id,\n \'gene_name\': gene_name,\n
}\n\n response = requests.post(url, json={\'query\': query, \'variables\': variables})\n\n if response.status_code == 200:\n return json.loads(response.text)[\'data\']\n
else:\n print(f"Query failed with code {response.status_code}: {response.text}")\n return None\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\',
exist_ok=True)\n\n# Example usage:\ncase_id = "your_case_id" # Replace with the actual case ID\ngene_name = "EGFR" # Replace with the actual gene name\n\ndata =
get_case_and_spectral_counts(case_id, gene_name)\n\nif data:\n print(json.dumps(data, indent=2))'}
observation: Query failed with code 400: {"errors":[{"message":"Cannot query field \"samples\" on type \"UICase\". Did you mean
\"sample_id\"?","extensions":{"code":"GRAPHQL_VALIDATION_FAILED","exception":{"stacktrace":["GraphQLError: Cannot query field \"samples\" on type \"UICase\". Did you mean \"sample_id\"?","
at Object.Field (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/rules/FieldsOnCorrectTypeRule.js:48:31)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:323:29)"," at Object.enter
(/home/ec2-user/PDC_Build/graphql/node_modules/graphql/utilities/TypeInfo.js:370:25)"," at visit (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/language/visitor.js:243:26)"," at
validate (/home/ec2-user/PDC_Build/graphql/node_modules/graphql/validation/validate.js:69:24)"," at validate
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:477:27)"," at processGraphQLRequest
(/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/requestPipeline.ts:267:32)"," at runMicrotasks (<anonymous>)"," at processTicksAndRejections
(internal/process/task_queues.js:95:5)"," at processHTTPRequest (/home/ec2-user/PDC_Build/graphql/node_modules/apollo-server-core/src/runHttpQuery.ts:437:24)"]}}}]}
thought: The error indicates that the field "samples" is not valid for the "UICase" type. I need to correct the query by using a valid field such as "sample_id".
tool: AdhocApi.ask_api
tool_input: {'api': 'Proteomic Data Commons', 'query': 'What are the valid fields for querying sample information in the UICase type?'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23617, min_total_token_count=32768. Running model without cache.'}
observation: The `UICase` type in this GraphQL schema does not directly return sample information as a field. However, it contains a field called `samples` which returns a list of `Sample`
objects.
To get sample information within the `UICase` type, you would query the fields within the `samples` list. Here's how the structure looks within the schema:
```graphql
query CaseSummaryDataQuery($case_id: String!, $case_submitter_id: String!, $source: String!){
uiCase (case_id: $case_id, case_submitter_id: $case_submitter_id, source: $source) {
... other UICase fields ...
samples{
sample_id
gdc_sample_id
gdc_project_id
sample_submitter_id
... other Sample fields ...
}
... other UICase fields ...
}
}
```
You can request any of the fields listed within the `samples` curly braces as they represent the fields within the `Sample` object. Refer to the complete schema to see all available `Sample`
fields.
thought: I will correct the query by using the valid fields within the samples list in the UICase type to access sample information.
tool: AdhocApi.use_api
tool_input: {'api': 'Proteomic Data Commons', 'goal': 'Draft a query to access sample information using the valid fields within the samples list in the UICase type.'}
INFO {'api': 'Proteomic Data Commons', 'goal': 'Draft a query to access sample information using the valid fields within the samples list in the UICase type.'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23690, min_total_token_count=32768. Running model without cache.'}
INFO {'draft_code': 'import requests\nimport json\nimport pandas as pd\nimport os\n\ndef get_case_sample_info(case_submitter_id: str) -> pd.DataFrame:\n """\n This function takes a case_submitter_id and returns a pandas DataFrame containing\n information about the samples associated with that case.\n\n Args:\n case_submitter_id: The submitter ID of the case.\n\n Returns:\n A pandas DataFrame containing sample information.\n """\n\n url = \'https://pdc.cancer.gov/graphql\'\n query = """\n {\n uiCase(case_submitter_id: "%s") {\n samples {\n sample_id\n gdc_sample_id\n gdc_project_id\n sample_submitter_id\n sample_type\n status\n pool\n sample_is_ref\n biospecimen_anatomic_site\n biospecimen_laterality\n composition\n current_weight\n days_to_collection\n days_to_sample_procurement\n diagnosis_pathologically_confirmed\n freezing_method\n initial_weight\n intermediate_dimension\n longest_dimension\n method_of_sample_procurement\n pathology_report_uuid\n preservation_method\n sample_type_id\n shortest_dimension\n time_between_clamping_and_freezing\n time_between_excision_and_freezing\n tissue_type\n tumor_code\n tumor_code_id\n tumor_descriptor\n annotation\n }\n }\n }\n """ % case_submitter_id\n\n response = requests.post(url, json={\'query\': query})\n\n if response.status_code == 200:\n data = json.loads(response.text)\n if \'data\' in data:\n df = pd.json_normalize(data[\'data\'][\'uiCase\'], record_path=[\'samples\'])\n return df\n else:\n print(f"Error: Response does not contain \'data\' key: {data}")\n return pd.DataFrame()\n else:\n print(f"Error: Request failed with status code {response.status_code}")\n return pd.DataFrame()\n\n# Example usage\ncase_submitter_id = "C3L-00001"\nsample_df = get_case_sample_info(case_submitter_id)\n\nif not sample_df.empty:\n print(sample_df)'}
INFO {'fixed_code': 'import requests\nimport json\nimport pandas as pd\nimport os\n\ndef get_case_sample_info(case_submitter_id: str) -> pd.DataFrame:\n """\n This function takes a case_submitter_id and returns a pandas DataFrame containing\n information about the samples associated with that case.\n\n Args:\n case_submitter_id: The submitter ID of the case.\n\n Returns:\n A pandas DataFrame containing sample information.\n """\n\n url = \'https://pdc.cancer.gov/graphql\'\n query = """\n {\n uiCase(case_submitter_id: "%s") {\n samples {\n sample_id\n gdc_sample_id\n gdc_project_id\n sample_submitter_id\n sample_type\n status\n pool\n sample_is_ref\n biospecimen_anatomic_site\n biospecimen_laterality\n composition\n current_weight\n days_to_collection\n days_to_sample_procurement\n diagnosis_pathologically_confirmed\n freezing_method\n initial_weight\n intermediate_dimension\n longest_dimension\n method_of_sample_procurement\n pathology_report_uuid\n preservation_method\n sample_type_id\n shortest_dimension\n time_between_clamping_and_freezing\n time_between_excision_and_freezing\n tissue_type\n tumor_code\n tumor_code_id\n tumor_descriptor\n annotation\n }\n }\n }\n """ % case_submitter_id\n\n response = requests.post(url, json={\'query\': query})\n\n if response.status_code == 200:\n data = json.loads(response.text)\n if \'data\' in data:\n df = pd.json_normalize(data[\'data\'][\'uiCase\'], record_path=[\'samples\'])\n return df\n else:\n print(f"Error: Response does not contain \'data\' key: {data}")\n return pd.DataFrame()\n else:\n print(f"Error: Request failed with status code {response.status_code}")\n return pd.DataFrame()\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Example usage\ncase_submitter_id = "C3L-00001"\nsample_df = get_case_sample_info(case_submitter_id)\n\nif not sample_df.empty:\n print(sample_df)'}
INFO {'info': 'directly returning code'}
observation: import requests
import json
import pandas as pd
import os
def get_case_sample_info(case_submitter_id: str) -> pd.DataFrame:
"""
This function takes a case_submitter_id and returns a pandas DataFrame containing
information about the samples associated with that case.
Args:
case_submitter_id: The submitter ID of the case.
Returns:
A pandas DataFrame containing sample information.
"""
url = 'https://pdc.cancer.gov/graphql'
query = """
{
uiCase(case_submitter_id: "%s") {
samples {
sample_id
gdc_sample_id
gdc_project_id
sample_submitter_id
sample_type
status
pool
sample_is_ref
biospecimen_anatomic_site
biospecimen_laterality
composition
current_weight
days_to_collection
days_to_sample_procurement
diagnosis_pathologically_confirmed
freezing_method
initial_weight
intermediate_dimension
longest_dimension
method_of_sample_procurement
pathology_report_uuid
preservation_method
sample_type_id
shortest_dimension
time_between_clamping_and_freezing
time_between_excision_and_freezing
tissue_type
tumor_code
tumor_code_id
tumor_descriptor
annotation
}
}
}
""" % case_submitter_id
response = requests.post(url, json={'query': query})
if response.status_code == 200:
data = json.loads(response.text)
if 'data' in data:
df = pd.json_normalize(data['data']['uiCase'], record_path=['samples'])
return df
else:
print(f"Error: Response does not contain 'data' key: {data}")
return pd.DataFrame()
else:
print(f"Error: Request failed with status code {response.status_code}")
return pd.DataFrame()
# Ensure the data directory exists
os.makedirs('./data/', exist_ok=True)
# Example usage
case_submitter_id = "C3L-00001"
sample_df = get_case_sample_info(case_submitter_id)
if not sample_df.empty:
print(sample_df)
thought: I have drafted a query to access sample information using the valid fields within the samples list in the UICase type. Now, I will run the code to get the results.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport json\nimport pandas as pd\nimport os\n\ndef get_case_sample_info(case_submitter_id: str) -> pd.DataFrame:\n """\n This function takes a
case_submitter_id and returns a pandas DataFrame containing\n information about the samples associated with that case.\n\n Args:\n case_submitter_id: The submitter ID of the
case.\n\n Returns:\n A pandas DataFrame containing sample information.\n """\n\n url = \'https://pdc.cancer.gov/graphql\'\n query = """\n {\n
uiCase(case_submitter_id: "%s") {\n samples {\n sample_id\n gdc_sample_id\n gdc_project_id\n sample_submitter_id\n sample_type\n
status\n pool\n sample_is_ref\n biospecimen_anatomic_site\n biospecimen_laterality\n composition\n current_weight\n
days_to_collection\n days_to_sample_procurement\n diagnosis_pathologically_confirmed\n freezing_method\n initial_weight\n intermediate_dimension\n
longest_dimension\n method_of_sample_procurement\n pathology_report_uuid\n preservation_method\n sample_type_id\n shortest_dimension\n
time_between_clamping_and_freezing\n time_between_excision_and_freezing\n tissue_type\n tumor_code\n tumor_code_id\n tumor_descriptor\n
annotation\n }\n }\n }\n """ % case_submitter_id\n\n response = requests.post(url, json={\'query\': query})\n\n if response.status_code == 200:\n data =
json.loads(response.text)\n if \'data\' in data:\n df = pd.json_normalize(data[\'data\'][\'uiCase\'], record_path=[\'samples\'])\n return df\n else:\n
print(f"Error: Response does not contain \'data\' key: {data}")\n return pd.DataFrame()\n else:\n print(f"Error: Request failed with status code
{response.status_code}")\n return pd.DataFrame()\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Example usage\ncase_submitter_id =
"C3L-00001"\nsample_df = get_case_sample_info(case_submitter_id)\n\nif not sample_df.empty:\n print(sample_df)'}
observation: Error: Request failed with status code 400
thought: The error indicates that the request failed with status code 400, which suggests there might be an issue with the query or the case_submitter_id. I need to verify the query structure
and the case_submitter_id.
tool: AdhocApi.ask_api
tool_input: {'api': 'Proteomic Data Commons', 'query': 'What is the correct structure for querying sample information using the uiCase type, and what is a valid case_submitter_id?'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23617, min_total_token_count=32768. Running model without cache.'}
observation: You can query sample information through the `uiCaseSummary` type, not `uiCase`. The `uiCaseSummary` provides detailed information about a case, including associated samples.
You can then access the `samples` field within the `uiCaseSummary` results to retrieve sample-specific data.
Here's how the structure looks:
```graphql
query {
uiCaseSummary(case_id: "YOUR_CASE_ID", source: "YOUR_SOURCE") {
case_id
samples {
sample_id
sample_submitter_id
sample_type
# ... other sample fields you need
}
# ... other case fields you may need
}
}
```
Replace placeholders accordingly:
- **YOUR_CASE_ID:** A valid case ID. Example: `"7db8a437-a484-4440-8d01-581978607a9d"`
- **YOUR_SOURCE:** The data source. Example: `"PDC"` or `"legacy"`
To find a valid `case_submitter_id`, you can use the `FilteredCasesDataPaginated` query with the appropriate filters or use the `CaseSearchQuery`.
For example, you can search for cases related to a specific disease type:
```graphql
query {
getPaginatedUICase(
offset: 0
limit: 10
disease_type: "YOUR_DISEASE_TYPE"
source: "PDC"
) {
uiCases {
case_id
case_submitter_id
# ... other fields
}
# ... pagination information
}
}
```
Replace `"YOUR_DISEASE_TYPE"` with the desired disease type. This will give you a list of up to 10 case IDs and their `case_submitter_id` values, which you can then use in the `uiCaseSummary`
query.
thought: I will correct the query by using the uiCaseSummary type to access sample information and ensure I use a valid case_id and source.
tool: AdhocApi.use_api
tool_input: {'api': 'Proteomic Data Commons', 'goal': 'Draft a query using the uiCaseSummary type to access sample information with a valid case_id and source.'}
INFO {'api': 'Proteomic Data Commons', 'goal': 'Draft a query using the uiCaseSummary type to access sample information with a valid case_id and source.'}
INFO {'cache': 'No cached content found for "api_assistant_gdc_david_testing". pushing new instance.'}
INFO {'cache': '400 Cached content is too small. total_token_count=23690, min_total_token_count=32768. Running model without cache.'}
INFO {'draft_code': 'import requests\nimport json\nimport pandas as pd\nimport os\n\n# Replace with a valid case_id\ncase_id = "case_id"\n\n# Source (e.g., \'PDC\')\nsource = "PDC"\n\nquery = """\nquery FilteredStudiesData {\n uiCaseSummary(case_id: "%s", source: "%s") {\n samples {\n sample_id\n sample_submitter_id\n annotation\n }\n }\n}\n""" % (case_id, source)\n\nurl = \'https://pdc.cancer.gov/graphql\'\nr = requests.post(url, json={\'query\': query})\n\n# Convert the result to JSON\ndata = json.loads(r.text)\n\n# Access and process the data\nsamples_data = data[\'data\'][\'uiCaseSummary\'][\'samples\']\n\n# Further process or display the data as needed\nprint(json.dumps(samples_data, indent=4))'}
INFO {'fixed_code': 'import requests\nimport json\nimport os\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Replace with a valid case_id\ncase_id = "case_id"\n\n# Source (e.g., \'PDC\')\nsource = "PDC"\n\nquery = """\nquery FilteredStudiesData {\n uiCaseSummary(case_id: "%s", source: "%s") {\n samples {\n sample_id\n sample_submitter_id\n annotation\n }\n }\n}\n""" % (case_id, source)\n\nurl = \'https://pdc.cancer.gov/graphql\'\nr = requests.post(url, json={\'query\': query})\n\n# Convert the result to JSON\ndata = json.loads(r.text)\n\n# Access and process the data\nsamples_data = data[\'data\'][\'uiCaseSummary\'][\'samples\']\n\n# Further process or display the data as needed\nprint(json.dumps(samples_data, indent=4))'}
INFO {'info': 'directly returning code'}
observation: import requests
import json
import os
# Ensure the data directory exists
os.makedirs('./data/', exist_ok=True)
# Replace with a valid case_id
case_id = "case_id"
# Source (e.g., 'PDC')
source = "PDC"
query = """
query FilteredStudiesData {
uiCaseSummary(case_id: "%s", source: "%s") {
samples {
sample_id
sample_submitter_id
annotation
}
}
}
""" % (case_id, source)
url = 'https://pdc.cancer.gov/graphql'
r = requests.post(url, json={'query': query})
# Convert the result to JSON
data = json.loads(r.text)
# Access and process the data
samples_data = data['data']['uiCaseSummary']['samples']
# Further process or display the data as needed
print(json.dumps(samples_data, indent=4))
thought: I have drafted a query using the uiCaseSummary type to access sample information with a valid case_id and source. Now, I will run the code to get the results.
tool: PythonTool.run
tool_input: {'code': 'import requests\nimport json\nimport os\n\n# Ensure the data directory exists\nos.makedirs(\'./data/\', exist_ok=True)\n\n# Replace with a valid case_id\ncase_id =
"7db8a437-a484-4440-8d01-581978607a9d"\n\n# Source (e.g., \'PDC\')\nsource = "PDC"\n\nquery = """\nquery FilteredStudiesData {\n uiCaseSummary(case_id: "%s", source: "%s") {\n samples {\n
sample_id\n sample_submitter_id\n annotation\n }\n }\n}\n""" % (case_id, source)\n\nurl = \'https://pdc.cancer.gov/graphql\'\nr = requests.post(url, json={\'query\':
query})\n\n# Convert the result to JSON\ndata = json.loads(r.text)\n\n# Access and process the data\nsamples_data = data[\'data\'][\'uiCaseSummary\'][\'samples\']\n\n# Further process or
display the data as needed\nprint(json.dumps(samples_data, indent=4))'}
Error: Too many errors during task. Last error: error running tool "PythonTool.run": list indices must be integers or slices, not str
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment