Created
August 13, 2020 01:58
-
-
Save davidad/98decc5b23a7fe10eb35c8f970bcac25 to your computer and use it in GitHub Desktop.
There is exactly one way to choose 0 elements from the empty set.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Parameter set : Set. | |
Parameter In : (set * set) -> Prop. | |
Definition subset (A B : set) : Prop := | |
forall x : set, In(x,A) -> In(x,B). | |
Axiom ZF_extensionality : | |
forall X Y : set, | |
(forall z : set, In(z,X) <-> In(z,Y)) | |
-> X = Y. | |
Axiom ZF_specification : | |
forall (P: set -> Prop), forall X : set, | |
sig (fun (S : set) => | |
forall z : set, | |
In(z,S) <-> (In(z,X) /\ P(z)) ). | |
Axiom ZF_powerset : | |
forall X : set, | |
sig (fun (Y : set) => | |
forall Z : set, | |
subset Z X -> In(Z,Y) ). | |
Axiom ZF_pairing : | |
forall X Y : set, | |
sig (fun (Z : set) => | |
In(X,Z) /\ In(Y,Z) ). | |
Axiom ZF_emptyset : | |
sig (fun (X : set) => | |
forall y : set, | |
not(In(y,X)) ). | |
Lemma proper_powerset : | |
forall X : set, | |
sig (fun (Y : set) => | |
forall Z : set, | |
subset Z X <-> In(Z,Y) ). | |
Proof. | |
intros. | |
destruct (ZF_powerset X) as [px]. | |
destruct (ZF_specification (fun z => subset z X) px) as [ppx]. | |
firstorder. | |
Qed. | |
Definition subsets_of : set -> set := fun X => | |
proj1_sig (proper_powerset X). | |
Definition specified (P : set -> Prop) (X : set) : set := | |
proj1_sig (ZF_specification P X). | |
Definition Empty : set := proj1_sig ZF_emptyset. | |
Definition Zero : set := Empty. | |
Lemma one : sig (fun (One : set) => forall z : set, In(z, One) <-> z = Zero). | |
Proof. | |
destruct (ZF_pairing Zero Zero) as [pzz]. | |
destruct (ZF_specification (fun z => z = Zero) pzz) as [one]. | |
exists one. | |
firstorder. | |
rewrite H1. | |
firstorder. | |
Qed. | |
Definition One : set := proj1_sig one. | |
Ltac use_properties_of X x := | |
unfold X in *; | |
let S := fresh "S" in pose proof (proj2_sig x); remember (proj1_sig x) as S eqn:Seq; clear Seq. | |
Theorem exactly_one_zero_subset_of_empty_set : (specified (fun s => s = Zero) (subsets_of Empty)) = One. | |
Proof. | |
apply ZF_extensionality. | |
intuition. | |
all: use_properties_of One one; | |
use_properties_of specified (ZF_specification (fun s => s = Zero) (subsets_of Empty)); | |
unfold Zero in *; | |
use_properties_of Empty ZF_emptyset; | |
use_properties_of subsets_of (proper_powerset S0). | |
{ apply H0. | |
apply ZF_extensionality. | |
pose proof (H1 z). | |
intuition; | |
rewrite <- H7 in *; | |
trivial. } | |
{ assert (zZ : z = S1) by firstorder. | |
rewrite zZ. | |
apply H1. | |
intuition. | |
apply (proj2_sig (proper_powerset S1)). | |
unfold subset; trivial. } | |
Qed. | |
Check exactly_one_zero_subset_of_empty_set. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment