Created
June 30, 2023 04:23
-
-
Save davidberard98/066fd2115f59f5889ef61e4527d1eba5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch._dynamo | |
import torch._inductor.inductor_prims | |
def fn(values, boundaries): | |
return torch.bucketize(values, boundaries) | |
def fn_ind(values, boundaries): | |
return torch.ops.prims._inductor_bucketize(values, boundaries) | |
def get_inputs(): | |
values = torch.rand((16, 1024, 1024)).cuda() | |
boundaries = torch.rand((1025,)).sort()[0].cuda() | |
return (values, boundaries) | |
inputs = [get_inputs() for _ in range(32)] | |
opt_fn = torch.compile(fn_ind) | |
start_evt_eager = torch.cuda.Event(enable_timing=True) | |
end_evt_eager = torch.cuda.Event(enable_timing=True) | |
start_evt_pt2 = torch.cuda.Event(enable_timing=True) | |
end_evt_pt2 = torch.cuda.Event(enable_timing=True) | |
for inp in inputs: | |
fn(*inp) | |
opt_fn(*inp) | |
torch.cuda.synchronize() | |
start_evt_eager.record() | |
for inp in inputs: | |
fn(*inp) | |
end_evt_eager.record() | |
torch.cuda.synchronize() | |
print(f"Eager {start_evt_eager.elapsed_time(end_evt_eager) / len(inputs)} ms") | |
start_evt_pt2.record() | |
for inp in inputs: | |
opt_fn(*inp) | |
end_evt_pt2.record() | |
torch.cuda.synchronize() | |
print(f"PT2 {start_evt_pt2.elapsed_time(end_evt_pt2) / len(inputs)} ms") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment