Created
November 4, 2024 18:34
-
-
Save davidberard98/4f81d8f25daad1be5436cf41f45903d5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# AOT ID: ['0_inference'] | |
from ctypes import c_void_p, c_long, c_int | |
import torch | |
import math | |
import random | |
import os | |
import tempfile | |
from math import inf, nan | |
from torch._inductor.hooks import run_intermediate_hooks | |
from torch._inductor.utils import maybe_profile | |
from torch._inductor.codegen.memory_planning import _align as align | |
from torch import device, empty_strided | |
from torch._inductor.async_compile import AsyncCompile | |
from torch._inductor.select_algorithm import extern_kernels | |
from torch._inductor.codegen.multi_kernel import MultiKernelCall | |
import triton | |
import triton.language as tl | |
from torch._inductor.runtime.triton_heuristics import ( | |
grid, | |
split_scan_grid, | |
grid_combo_kernels, | |
start_graph, | |
end_graph, | |
cooperative_reduction_grid, | |
) | |
from torch._C import _cuda_getCurrentRawStream as get_raw_stream | |
aten = torch.ops.aten | |
inductor_ops = torch.ops.inductor | |
_quantized = torch.ops._quantized | |
assert_size_stride = torch._C._dynamo.guards.assert_size_stride | |
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu | |
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda | |
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu | |
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor | |
alloc_from_pool = torch.ops.inductor._alloc_from_pool | |
async_compile = AsyncCompile() | |
empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p | |
# kernel path: /tmp/torchinductor_dberard/i5/ci5pipzer3zksupmrmrjquugfjpdi4554fbou3bdeayfbyshpqda.py | |
# Topologically Sorted Source Nodes: [logcumsumexp], Original ATen: [aten.logcumsumexp] | |
# Source node to ATen node mapping: | |
# logcumsumexp => logcumsumexp | |
# Graph fragment: | |
# %logcumsumexp : [num_users=1] = call_function[target=torch.ops.aten.logcumsumexp.default](args = (%arg0_1, 0), kwargs = {}) | |
triton_per_fused_logcumsumexp_0 = async_compile.triton('triton_per_fused_logcumsumexp_0', ''' | |
import triton | |
import triton.language as tl | |
from triton.compiler.compiler import AttrsDescriptor | |
from torch._inductor.runtime import triton_helpers, triton_heuristics | |
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math | |
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties | |
triton_helpers.set_driver_to_gpu() | |
@triton.jit | |
def _triton_helper_fn_minimum_maximum_ne_isinf_bitwise_not_bitwise_or_sub_exp_log1p_add_where0(arg0_0, arg1_0): | |
tmp0 = triton_helpers.minimum(arg0_0, arg1_0) | |
tmp1 = triton_helpers.maximum(arg0_0, arg1_0) | |
tmp2 = tmp0 != tmp1 | |
tmp3 = libdevice.isinf(tmp0).to(tl.int1) | |
tmp4 = ~tmp3 | |
tmp5 = tmp2 | tmp4 | |
tmp6 = tmp0 - tmp1 | |
tmp7 = tl_math.exp(tmp6) | |
tmp8 = libdevice.log1p(tmp7) | |
tmp9 = tmp8 + tmp1 | |
tmp10 = tl.where(tmp5, tmp9, arg0_0) | |
return tmp10 | |
@triton_heuristics.persistent_reduction( | |
size_hints=[32, 16], | |
reduction_hint=ReductionHint.DEFAULT, | |
filename=__file__, | |
triton_meta={'signature': {'in_ptr0': '*fp32', 'out_ptr0': '*fp32', 'xnumel': 'i32', 'rnumel': 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132, warp_size=32), 'constants': {}, 'configs': [AttrsDescriptor.from_dict({'arg_properties': {'tt.divisibility': (0, 1, 2, 3), 'tt.equal_to': ()}, 'cls': 'AttrsDescriptor'})]}, | |
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_logcumsumexp_0', 'mutated_arg_names': [], 'optimize_mem': True, 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': '63A118008A8D9F5C10AB08E75F67129677D36B011F4277B312BCA9383911253E', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} | |
) | |
@triton.jit | |
def triton_per_fused_logcumsumexp_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): | |
xnumel = 32 | |
rnumel = 16 | |
RBLOCK: tl.constexpr = 16 | |
xoffset = tl.program_id(0) * XBLOCK | |
xindex = xoffset + tl.arange(0, XBLOCK)[:, None] | |
xmask = xindex < xnumel | |
rindex = tl.arange(0, RBLOCK)[None, :] | |
roffset = 0 | |
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) | |
r1 = rindex | |
x0 = xindex | |
tmp0 = tl.load(in_ptr0 + (x0 + (32*r1)), xmask, other=0.0) | |
tmp1 = tmp0.to(tl.float32) | |
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) | |
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_minimum_maximum_ne_isinf_bitwise_not_bitwise_or_sub_exp_log1p_add_where0) | |
tl.store(out_ptr0 + (x0 + (32*r1)), tmp3, xmask) | |
''', device_str='cuda') | |
async_compile.wait(globals()) | |
del async_compile | |
def call(args): | |
arg0_1, = args | |
args.clear() | |
assert_size_stride(arg0_1, (16, 32), (32, 1)) | |
with torch.cuda._DeviceGuard(0): | |
torch.cuda.set_device(0) | |
buf0 = empty_strided_cuda((16, 32), (32, 1), torch.float32) | |
# Topologically Sorted Source Nodes: [logcumsumexp], Original ATen: [aten.logcumsumexp] | |
stream0 = get_raw_stream(0) | |
triton_per_fused_logcumsumexp_0.run(arg0_1, buf0, 32, 16, grid=grid(32), stream=stream0) | |
del arg0_1 | |
return (buf0, ) | |
def benchmark_compiled_module(times=10, repeat=10): | |
from torch._dynamo.testing import rand_strided | |
from torch._inductor.utils import print_performance | |
arg0_1 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32) | |
fn = lambda: call([arg0_1]) | |
return print_performance(fn, times=times, repeat=repeat) | |
if __name__ == "__main__": | |
from torch._inductor.wrapper_benchmark import compiled_module_main | |
compiled_module_main('None', benchmark_compiled_module) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment