Skip to content

Instantly share code, notes, and snippets.

@davidberard98
Last active June 10, 2022 01:25
Show Gist options
  • Save davidberard98/53b277b57ddc8d35340fecd279a9688d to your computer and use it in GitHub Desktop.
Save davidberard98/53b277b57ddc8d35340fecd279a9688d to your computer and use it in GitHub Desktop.
import argparse
from torch.utils.jit.log_extract import load_graph_and_inputs, run_nnc, run_nvfuser
ir = ["""graph(%maskT.1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(204, 204, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%zt.1 : Double(26, strides=[1], requires_grad=0, device=cuda:0)):
%4 : float = prim::Constant[value=0.79871999999999999]()
%betaT.1 : float = prim::Constant[value=0.00016699999999999999]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:9:12
%rho0.1 : float = prim::Constant[value=1024.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:5:11
%7 : float = prim::Constant[value=1.0790999999999999e-07]()
%betaTs.1 : float = prim::Constant[value=1.0000000000000001e-05]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:10:13
%9 : float = prim::Constant[value=9.8500000000000227]()
%10 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%11 : float = prim::Constant[value=0.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:48
%12 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::abs(%zt.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:79:70
%13 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::neg(%12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:13:9
%zz.1 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::sub(%13, %11, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:13:9
%thetas.1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %9, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:14:13
%16 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%thetas.1, %betaTs.1) # <string>:3:9
%17 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::mul(%zz.1, %7) # <string>:3:9
%18 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::mul(%17, %rho0.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:15:44
%19 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::neg(%18) # <string>:11:9
%20 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::add(%19, %10, %10) # <string>:11:9
%21 : Double(26, strides=[1], requires_grad=0, device=cuda:0) = aten::mul(%20, %betaT.1) # <string>:3:9
%22 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %21, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:15:13
%23 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%22) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:15:11
%24 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%23, %rho0.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:15:11
%drdT.1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%maskT.1, %24) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:79:11
%26 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %4) # <string>:3:9
%drdS.1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%maskT.1, %26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:80:11
return (%drdS.1, %drdT.1)
""", """graph(%0 : Double(1, 1, 25, strides=[26, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(204, 204, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(204, 204, 25, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%3 : Double(204, 204, 25, strides=[15912, 78, 3], requires_grad=0, device=cuda:0)):
%4 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%5 : Double(204, 204, 25, strides=[5100, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:87:11
%6 : Double(204, 204, 25, strides=[5100, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:8
%7 : Double(204, 204, 25, strides=[5100, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%6, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:8
return (%7)
""", """graph(%0 : Double(1, 1, 25, strides=[26, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(204, 204, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(204, 204, 25, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%3 : Double(204, 204, 25, strides=[15912, 78, 3], requires_grad=0, device=cuda:0)):
%4 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%5 : Double(204, 204, 25, strides=[5100, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:92:11
%6 : Double(204, 204, 25, strides=[5100, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:91:8
%7 : Double(204, 204, 25, strides=[5100, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%6, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:91:8
return (%7)
""", """graph(%0 : Double(203, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0),
%1 : Double(1, 204, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0),
%2 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(203, 204, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%4 : Double(203, 204, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0)):
%5 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%6 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:101:11
%7 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:100:8
%8 : Double(203, 204, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:102:11
%9 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:100:8
return (%9)
""", """graph(%0 : Double(203, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0),
%1 : Double(1, 204, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0),
%2 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(203, 204, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%4 : Double(203, 204, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0)):
%5 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%6 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:106:11
%7 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:105:8
%8 : Double(203, 204, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:107:11
%9 : Double(203, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:105:8
return (%9)
""", """graph(%0 : Double(1, 203, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0),
%1 : Double(204, 203, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(204, 203, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%3 : Double(204, 203, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0)):
%4 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%5 : Double(204, 203, 26, strides=[5278, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:115:11
%6 : Double(204, 203, 26, strides=[5278, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:114:8
%7 : Double(204, 203, 26, strides=[5278, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%6, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:114:8
return (%7)
""", """graph(%0 : Double(1, 203, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0),
%1 : Double(204, 203, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(204, 203, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0),
%3 : Double(204, 203, 26, strides=[15912, 78, 3], requires_grad=0, device=cuda:0)):
%4 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%5 : Double(204, 203, 26, strides=[5278, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:120:11
%6 : Double(204, 203, 26, strides=[5278, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:119:8
%7 : Double(204, 203, 26, strides=[5278, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%6, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:119:8
return (%7)
""", """graph(%0 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%4 : float = prim::Constant[value=0.25]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:128:30
%5 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%6 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %3, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:8
%7 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%6, %1, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:8
%8 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%7, %0, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:8
%9 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%8, %4) # <string>:3:9
return (%9)
""", """graph(%0 : Double(201, 200, strides=[5304, 26], requires_grad=0, device=cuda:0),
%1 : Double(201, 200, strides=[5304, 26], requires_grad=0, device=cuda:0)):
%2 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%3 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%4 : Double(201, 200, strides=[200, 1], requires_grad=0, device=cuda:0) = aten::add(%0, %1, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:36
%5 : Double(201, 200, strides=[200, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %2) # <string>:3:9
return (%5)
""", """graph(%0 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%2 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%8 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%9 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.2 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.1 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%12 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%13 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%14 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:146:18
%drodxe.1 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %14, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%16 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%17 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:150:18
%drodze.1 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %17, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%19 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxe.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%20 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::min(%drodze.1, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%21 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%20, %epsln.1, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%sxe.1 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%19, %21) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%23 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxe.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%24 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%25 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %iso_slopec.2, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%26 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%25, %iso_slopec.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%27 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%28 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %9, %12) # <string>:5:9
%taper.1 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%28, %8) # <string>:3:9
%30 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.1, %sxe.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
%31 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
return (%31, %taper.1)
""", """graph(%0 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%2 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%8 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%9 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.2 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.1 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%12 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%13 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%14 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:146:18
%drodxe.2 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %14, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%16 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%17 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:150:18
%drodze.2 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %17, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%19 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxe.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%20 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::min(%drodze.2, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%21 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%20, %epsln.1, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%sxe.2 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%19, %21) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%23 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxe.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%24 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%25 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %iso_slopec.2, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%26 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%25, %iso_slopec.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%27 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%28 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %9, %12) # <string>:5:9
%taper.2 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%28, %8) # <string>:3:9
%30 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.2, %sxe.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
%31 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
return (%31, %taper.2)
""", """graph(%0 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%2 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%8 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%9 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.2 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.1 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%12 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%13 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%14 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:146:18
%drodxe.10 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %14, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%16 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%17 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:150:18
%drodze.10 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %17, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%19 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxe.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%20 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::min(%drodze.10, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%21 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%20, %epsln.1, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%sxe.10 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%19, %21) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%23 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxe.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%24 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%25 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %iso_slopec.2, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%26 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%25, %iso_slopec.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%27 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::tanh(%26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%28 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %9, %12) # <string>:5:9
%taper.10 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%28, %8) # <string>:3:9
%30 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.10, %sxe.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
%31 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
return (%31, %taper.10)
""", """graph(%0 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%2 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%4 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%7 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%8 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%9 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%10 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%11 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%12 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%13 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0),
%14 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%15 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%16 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%17 : Double(201, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%18 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%19 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%20 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0)):
%21 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%22 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.13 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.5 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%25 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%26 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%19, %20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:161:20
%27 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:159:18
%28 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%17, %18) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:161:20
%29 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %28) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:159:18
%30 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%15, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:161:20
%31 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %30) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:159:18
%32 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %14) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:157:16
%33 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%34 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %11) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:146:18
%drodxe.12 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%33, %34, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:145:16
%36 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%37 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:150:18
%drodze.12 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%36, %37, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:149:16
%39 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxe.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%40 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::min(%drodze.12, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%41 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%40, %epsln.5, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:153:16
%sxe.12 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%39, %41) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:152:18
%43 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxe.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%44 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%43) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%45 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%44, %iso_slopec.13, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%46 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%45, %iso_slopec.13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%47 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::tanh(%46) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%48 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%47, %22, %25) # <string>:5:9
%taper.12 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%48, %21) # <string>:3:9
%50 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.12, %sxe.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
%51 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%50, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:164:45
%52 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %taper.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:161:20
%53 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %52) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:159:18
%54 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%32, %53) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:157:16
%55 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %31) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:157:16
%56 : Double(201, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:157:16
%57 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %27) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:157:16
return (%57, %56, %55, %54, %51)
""", """graph(%sumz.1 : Double(201, 200, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0)):
%2 : float = prim::Constant[value=4.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:165:34
%3 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %2) # <string>:3:9
%4 : Double(201, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%sumz.1, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:165:26
return (%4)
""", """graph(%0 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%4 : float = prim::Constant[value=0.25]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:128:30
%5 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%6 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %3, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:172:8
%7 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%6, %1, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:172:8
%8 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%7, %0, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:172:8
%9 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%8, %4) # <string>:3:9
return (%9)
""", """graph(%0 : Double(200, 201, strides=[5304, 26], requires_grad=0, device=cuda:0),
%1 : Double(200, 201, strides=[5304, 26], requires_grad=0, device=cuda:0)):
%2 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%3 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%4 : Double(200, 201, strides=[201, 1], requires_grad=0, device=cuda:0) = aten::add(%0, %1, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:177:36
%5 : Double(200, 201, strides=[201, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %2) # <string>:3:9
return (%5)
""", """graph(%0 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%2 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%8 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%9 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.2 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.1 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%12 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%13 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%14 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:189:18
%drodyn.1 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %14, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%16 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%17 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:193:18
%drodzn.1 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %17, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%19 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyn.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%20 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::min(%1, %drodzn.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%21 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%20, %epsln.1, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%syn.1 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%19, %21) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%23 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%syn.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%24 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%25 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %iso_slopec.2, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%26 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%25, %iso_slopec.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%27 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%28 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %9, %12) # <string>:5:9
%taper.7 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%28, %8) # <string>:3:9
%30 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.7, %syn.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
%31 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
return (%31, %taper.7)
""", """graph(%0 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%2 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%8 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%9 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.2 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.1 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%12 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%13 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%14 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:189:18
%drodyn.2 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %14, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%16 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%17 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:193:18
%drodzn.2 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %17, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%19 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyn.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%20 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::min(%1, %drodzn.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%21 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%20, %epsln.1, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%syn.2 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%19, %21) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%23 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%syn.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%24 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%25 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %iso_slopec.2, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%26 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%25, %iso_slopec.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%27 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%28 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %9, %12) # <string>:5:9
%taper.26 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%28, %8) # <string>:3:9
%30 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.26, %syn.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
%31 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
return (%31, %taper.26)
""", """graph(%0 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%2 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%8 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%9 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.2 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.1 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%12 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%13 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%14 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:189:18
%drodyn.10 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %14, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%16 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%17 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:193:18
%drodzn.10 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %17, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%19 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyn.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%20 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::min(%1, %drodzn.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%21 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%20, %epsln.1, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%syn.10 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%19, %21) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%23 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::abs(%syn.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%24 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%25 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %iso_slopec.2, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%26 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%25, %iso_slopec.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%27 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::tanh(%26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%28 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %9, %12) # <string>:5:9
%taper.34 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%28, %8) # <string>:3:9
%30 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.34, %syn.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
%31 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
return (%31, %taper.34)
""", """graph(%0 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0),
%3 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%4 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%7 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%9 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%10 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%11 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%12 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%13 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0),
%14 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%15 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%16 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0),
%17 : Double(200, 201, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%18 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0),
%19 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%20 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0)):
%21 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%22 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.13 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.5 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%25 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%26 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%19, %20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:204:20
%27 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:202:18
%28 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%17, %18) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:204:20
%29 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %28) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:202:18
%30 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%15, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:204:20
%31 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %30) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:202:18
%32 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %14) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:200:16
%33 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%34 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %11) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:189:18
%drodyn.12 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%33, %34, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:188:16
%36 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%37 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:193:18
%drodzn.12 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%36, %37, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:192:16
%39 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyn.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%40 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::min(%6, %drodzn.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%41 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%40, %epsln.5, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:196:16
%syn.12 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%39, %41) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:195:18
%43 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::abs(%syn.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%44 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::neg(%43) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%45 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%44, %iso_slopec.13, %25) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%46 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%45, %iso_slopec.13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%47 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::tanh(%46) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%48 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%47, %22, %25) # <string>:5:9
%taper.36 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%48, %21) # <string>:3:9
%50 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.36, %syn.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
%51 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%50, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:207:45
%52 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %taper.36) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:204:20
%53 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::max(%3, %52) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:202:18
%54 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%32, %53) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:200:16
%55 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %31) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:200:16
%56 : Double(200, 201, 25, strides=[5025, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:200:16
%57 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %27) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:200:16
return (%57, %56, %55, %54, %51)
""", """graph(%sumz.7 : Double(200, 201, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0)):
%2 : float = prim::Constant[value=4.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:165:34
%3 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %2) # <string>:3:9
%4 : Double(200, 201, 26, strides=[5226, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%sumz.7, %3) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:208:26
return (%4)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%9 : Double(200, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0),
%10 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%11 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%12 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%13 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.2 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%16 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%17 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:225:12
%19 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:226:14
%drodzb.1 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%18, %19, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:225:12
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:233:18
%drodxb.1 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %22, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::min(%2, %drodzb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:236:16
%26 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%25, %epsln.2, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:236:16
%sxb.1 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%24, %26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%28) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%29, %iso_slopec.6, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%30, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%31) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%33 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%32, %13, %16) # <string>:5:9
%taper.13 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%33, %12) # <string>:3:9
%35 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.13, %sxb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%36 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%35, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%37 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%sxb.1, %11) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:243:18
%38 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%17, %taper.13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%39 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%38, %37) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%40 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%39, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
return (%40, %36, %26)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%9 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%10 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%11 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%13 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%14 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%15 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%16 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:233:18
%drodxb.2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %16, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%sxb.2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%18, %2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%20 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %iso_slopec.6, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%23 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%22, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %11, %13) # <string>:5:9
%taper.50 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%25, %10) # <string>:3:9
%27 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.50, %sxb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%27, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%sxb.2, %9) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:243:18
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %taper.50) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%31, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
return (%32, %28)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(1, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%9 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%10 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%11 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%13 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%14 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%15 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%16 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:253:18
%drodyb.1 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %16, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%syb.1 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%18, %2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%20 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%syb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %iso_slopec.6, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%23 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%22, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %11, %13) # <string>:5:9
%taper.19 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%25, %10) # <string>:3:9
%27 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.19, %syb.1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%27, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%syb.1, %9) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:263:18
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %taper.19) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%31, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
return (%32, %28)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(1, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%9 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%10 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%11 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%13 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%14 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%15 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%16 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:253:18
%drodyb.2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %16, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%syb.2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%18, %2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%20 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%syb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %iso_slopec.6, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%23 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%22, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %11, %13) # <string>:5:9
%taper.58 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%25, %10) # <string>:3:9
%27 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.58, %syb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%27, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%syb.2, %9) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:263:18
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %taper.58) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%31, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
return (%32, %28)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Float(1, strides=[1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%9 : Double(200, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0),
%10 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%11 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%12 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%13 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%epsln.2 : float = prim::Constant[value=9.9999999999999995e-21]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:63:12
%16 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%17 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:225:12
%19 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:226:14
%drodzb.2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%18, %19, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:225:12
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:233:18
%drodxb.10 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %22, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxb.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::min(%2, %drodzb.2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:236:16
%26 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::sub(%25, %epsln.2, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:236:16
%sxb.10 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%24, %26) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxb.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%28) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%29, %iso_slopec.6, %16) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%30, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%31) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%33 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%32, %13, %16) # <string>:5:9
%taper.66 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%33, %12) # <string>:3:9
%35 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.66, %sxb.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%36 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%35, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%37 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%sxb.10, %11) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:243:18
%38 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%17, %taper.66) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%39 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%38, %37) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%40 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%39, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
return (%40, %36, %26)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(200, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%9 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%10 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%11 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%13 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%14 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%15 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%16 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:233:18
%drodxb.12 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %16, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:232:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodxb.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%sxb.12 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%18, %2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:235:18
%20 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%sxb.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %iso_slopec.6, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%23 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%22, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %11, %13) # <string>:5:9
%taper.68 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%25, %10) # <string>:3:9
%27 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.68, %sxb.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%27, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:246:45
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%sxb.12, %9) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:243:18
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %taper.68) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%31, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:240:16
return (%32, %28)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(1, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%9 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%10 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%11 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%13 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%14 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%15 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%16 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:253:18
%drodyb.10 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %16, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyb.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%syb.10 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%18, %2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%20 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%syb.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %iso_slopec.6, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%23 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%22, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %11, %13) # <string>:5:9
%taper.70 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%25, %10) # <string>:3:9
%27 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.70, %syb.10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%27, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%syb.10, %9) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:263:18
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %taper.70) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%31, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
return (%32, %28)
""", """graph(%0 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%2 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0),
%3 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%5 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%6 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%7 : Double(1, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0),
%8 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)):
%9 : int = prim::Constant[value=2]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:129:17
%10 : float = prim::Constant[value=0.5]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:134:29
%11 : float = prim::Constant[value=1.]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:18
%iso_slopec.6 : float = prim::Constant[value=0.001]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:28:17
%13 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%14 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%7, %8) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%15 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%16 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:253:18
%drodyb.12 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %16, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:252:16
%18 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%drodyb.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%syb.12 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%18, %2) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:255:18
%20 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::abs(%syb.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:37
%21 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::neg(%20) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%22 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %iso_slopec.6, %13) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%23 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%22, %iso_slopec.6) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:36
%24 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:30:24
%25 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %11, %13) # <string>:5:9
%taper.72 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%25, %10) # <string>:3:9
%27 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%taper.72, %syb.12) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%28 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%27, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:266:45
%29 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::pow(%syb.12, %9) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:263:18
%30 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %taper.72) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%31 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %29) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
%32 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::mul(%31, %0) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:260:16
return (%32, %28)
""", """graph(%sumy.26 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%1 : Double(1, 200, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0),
%2 : Double(1, 200, 1, strides=[204, 1, 1], requires_grad=0, device=cuda:0),
%sumx.26 : Double(200, 200, 25, strides=[5304, 26, 1], requires_grad=0, device=cuda:0),
%4 : Double(200, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0)):
%5 : int = prim::Constant[value=1]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:86:22
%6 : int = prim::Constant[value=4]() # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:268:36
%7 : Double(200, 1, 1, strides=[1, 1, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %6) # <string>:3:9
%8 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%sumx.26, %7) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:268:28
%9 : Double(1, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %6) # <string>:3:9
%10 : Double(1, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %1) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:269:8
%11 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::div(%sumy.26, %10) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:268:65
%12 : Double(200, 200, 25, strides=[5000, 25, 1], requires_grad=0, device=cuda:0) = aten::add(%8, %11, %5) # /scratch/dberard/bench-june/benchmark/torchbenchmark/models/pyhpc_isoneutral_mixing/isoneutral_pytorch.py:268:28
return (%12)
"""]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--id", action="extend", nargs="+", type=int)
args = parser.parse_args()
if args.id is None or len(args.id) == 0:
args.id = [i for i in range(len(ir))]
for idx in args.id:
_, inputs = load_graph_and_inputs(ir[idx])
nnc = run_nnc(ir[idx], inputs, dynamic=True)
nvfuser = run_nvfuser(ir[idx], inputs)
print(f"Fusion group {idx}:")
print(" NNC:", nnc)
print(" NVFuser:", nvfuser, "(improvement of ", (nnc / nvfuser - 1) * 100 , "% )")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment