Last active
December 9, 2022 21:38
-
-
Save davidberard98/982591d42acb9c39e0b8ecfd10ac7dda to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import inf | |
import torch | |
from torch import tensor, device | |
import torch.fx as fx | |
import torch._dynamo | |
from torch._dynamo.testing import rand_strided | |
from torch._dynamo.debug_utils import run_fwd_maybe_bwd | |
from torch._dynamo.debug_utils import same_two_models | |
import logging | |
torch._dynamo.config.log_level = logging.DEBUG | |
# REPLACEABLE COMMENT FOR TESTING PURPOSES | |
args = [((8192, 2048), (2048, 1), torch.float32, 'cuda', True), ((8192, 2048), (2048, 1), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192, 2048), (2048, 1), torch.float32, 'cuda', True), ((8192, 2048), (2048, 1), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192, 4096), (4096, 1), torch.float32, 'cuda', True), ((8192, 2048), (2048, 1), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192, 4096), (4096, 1), torch.float32, 'cuda', True), ((8192, 2048), (2048, 1), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((8192,), (1,), torch.float32, 'cuda', True), ((92, 4, 2048), (1, 188416, 92), torch.float32, 'cuda', True), ((4, 4, 2048), (8192, 2048, 1), torch.float32, 'cuda', False)] | |
args = [rand_strided(sh, st, dt, dev).requires_grad_(rg) for (sh, st, dt, dev, rg) in args] | |
zeros_1 = torch.zeros(4, 4, 2048, dtype = torch.float32, device = device(type='cuda', index=0)) | |
args.append(zeros_1) | |
from torch.nn import * | |
class Repro(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, self_model_lstm_lstm_flat_weights_0_ : torch.Tensor, self_model_lstm_lstm_flat_weights_1_ : torch.Tensor, self_model_lstm_lstm_flat_weights_2_ : torch.Tensor, self_model_lstm_lstm_flat_weights_3_ : torch.Tensor, self_model_lstm_lstm_flat_weights_4_ : torch.Tensor, self_model_lstm_lstm_flat_weights_5_ : torch.Tensor, self_model_lstm_lstm_flat_weights_6_ : torch.Tensor, self_model_lstm_lstm_flat_weights_7_ : torch.Tensor, self_model_lstm_lstm_flat_weights_8_ : torch.Tensor, self_model_lstm_lstm_flat_weights_9_ : torch.Tensor, self_model_lstm_lstm_flat_weights_10_ : torch.Tensor, self_model_lstm_lstm_flat_weights_11_ : torch.Tensor, self_model_lstm_lstm_flat_weights_12_ : torch.Tensor, self_model_lstm_lstm_flat_weights_13_ : torch.Tensor, self_model_lstm_lstm_flat_weights_14_ : torch.Tensor, self_model_lstm_lstm_flat_weights_15_ : torch.Tensor, permute, zeros, zeros_1): | |
# zeros_1 = torch.zeros(4, 4, 2048, dtype = torch.float32, device = device(type='cuda', index=0)) | |
lstm = torch.lstm(permute, (zeros, zeros_1), [self_model_lstm_lstm_flat_weights_0_, self_model_lstm_lstm_flat_weights_1_, self_model_lstm_lstm_flat_weights_2_, self_model_lstm_lstm_flat_weights_3_, self_model_lstm_lstm_flat_weights_4_, self_model_lstm_lstm_flat_weights_5_, self_model_lstm_lstm_flat_weights_6_, self_model_lstm_lstm_flat_weights_7_, self_model_lstm_lstm_flat_weights_8_, self_model_lstm_lstm_flat_weights_9_, self_model_lstm_lstm_flat_weights_10_, self_model_lstm_lstm_flat_weights_11_, self_model_lstm_lstm_flat_weights_12_, self_model_lstm_lstm_flat_weights_13_, self_model_lstm_lstm_flat_weights_14_, self_model_lstm_lstm_flat_weights_15_], True, 2, 0.0, True, True, False); permute = zeros = zeros_1 = self_model_lstm_lstm_flat_weights_0_ = self_model_lstm_lstm_flat_weights_1_ = self_model_lstm_lstm_flat_weights_2_ = self_model_lstm_lstm_flat_weights_3_ = self_model_lstm_lstm_flat_weights_4_ = self_model_lstm_lstm_flat_weights_5_ = self_model_lstm_lstm_flat_weights_6_ = self_model_lstm_lstm_flat_weights_7_ = self_model_lstm_lstm_flat_weights_8_ = self_model_lstm_lstm_flat_weights_9_ = self_model_lstm_lstm_flat_weights_10_ = self_model_lstm_lstm_flat_weights_11_ = self_model_lstm_lstm_flat_weights_12_ = self_model_lstm_lstm_flat_weights_13_ = self_model_lstm_lstm_flat_weights_14_ = self_model_lstm_lstm_flat_weights_15_ = None | |
return (lstm,) | |
mod = Repro() | |
mode = torch._subclasses.FakeTensorMode() | |
def convert_args(args): | |
return [mode.from_tensor(t) for t in args] | |
def convert_args_functional(args): | |
return [torch._to_functional_tensor(mode.from_tensor(t)) for t in args] | |
traced_mod = torch.fx.symbolic_trace(mod) | |
print(traced_mod.graph) | |
print("~~~~~~~~LSTM sanity check (FakeTensors)") | |
converted_args = convert_args(args) | |
with mode: | |
# mod(*[mode.from_tensor(t) for t in args]) | |
# mod(*[mode2.from_tensor(t) for t in args]) | |
# mod(*args) | |
traced_mod(*converted_args) | |
print("~~~~~~~~LSTM sanity check PASSED") | |
print("~~~~~~~~LSTM check with functional tensors") | |
# converted_args = convert_args(args) | |
converted_args = convert_args_functional(args) | |
with mode: | |
traced_mod(*converted_args) | |
print("~~~~~~~~LSTM with functional tensors PASSED") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment