Created
January 27, 2018 18:31
-
-
Save daviddao/c456e3ba837c73865159aea4337b80b4 to your computer and use it in GitHub Desktop.
Distributed model parallelism with PyTorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train(epoch): | |
model.train() | |
model.cuda() | |
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | |
if dist.get_rank() == 0: | |
input_from_part2 = torch.FloatTensor(data.size()[0], 320) | |
for batch_idx, (data, target) in enumerate(train_loader): | |
optimizer.zero_grad() | |
data = Variable(data.cuda()) | |
output = model(data) | |
dist.send(output.data.cpu(), dst=1) | |
dist.recv(tensor=input_from_part2, src= 1) | |
output.backward(input_from_part2.cuda()) | |
optimizer.step() | |
else: | |
output_from_part1 = torch.FloatTensor(data.size()[0], 320) | |
for batch_idx, (data, target) in enumerate(train_loader): | |
optimizer.zero_grad() | |
target = Variable(target) | |
dist.recv(tensor=output_from_part1, src=0) | |
input = Variable(output_from_part1, requires_grad = True) | |
output = model(input) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
dist.send(input.grad.data, dst=0) | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.data[0])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment