Last active
July 18, 2019 10:25
-
-
Save daviddesancho/4abdc0d40e2355671ead7f8e40283b57 to your computer and use it in GitHub Desktop.
mdp and log files for free energy simulation in Gromacs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Log file opened on Thu Jul 18 09:57:46 2019 | |
Host: villin pid: 32726 rank ID: 0 number of ranks: 1 | |
:-) GROMACS - gmx mdrun, 2018.2 (-: | |
GROMACS is written by: | |
Emile Apol Rossen Apostolov Paul Bauer Herman J.C. Berendsen | |
Par Bjelkmar Aldert van Buuren Rudi van Drunen Anton Feenstra | |
Gerrit Groenhof Aleksei Iupinov Christoph Junghans Anca Hamuraru | |
Vincent Hindriksen Dimitrios Karkoulis Peter Kasson Jiri Kraus | |
Carsten Kutzner Per Larsson Justin A. Lemkul Viveca Lindahl | |
Magnus Lundborg Pieter Meulenhoff Erik Marklund Teemu Murtola | |
Szilard Pall Sander Pronk Roland Schulz Alexey Shvetsov | |
Michael Shirts Alfons Sijbers Peter Tieleman Teemu Virolainen | |
Christian Wennberg Maarten Wolf | |
and the project leaders: | |
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel | |
Copyright (c) 1991-2000, University of Groningen, The Netherlands. | |
Copyright (c) 2001-2017, The GROMACS development team at | |
Uppsala University, Stockholm University and | |
the Royal Institute of Technology, Sweden. | |
check out http://www.gromacs.org for more information. | |
GROMACS is free software; you can redistribute it and/or modify it | |
under the terms of the GNU Lesser General Public License | |
as published by the Free Software Foundation; either version 2.1 | |
of the License, or (at your option) any later version. | |
GROMACS: gmx mdrun, version 2018.2 | |
Executable: /usr/local/gromacs/2018.2/bin/gmx | |
Data prefix: /usr/local/gromacs/2018.2 | |
Command line: | |
gmx mdrun -v -s data/***_ff03-star_tip3p_hremd_rep0.tpr -deffnm data/***_ff03-star_tip3p_hremd_rep0 -nsteps 5000 | |
GROMACS version: 2018.2 | |
Precision: single | |
Memory model: 64 bit | |
MPI library: thread_mpi | |
OpenMP support: enabled (GMX_OPENMP_MAX_THREADS = 64) | |
GPU support: disabled | |
SIMD instructions: AVX2_256 | |
FFT library: fftw-3.3.8-sse2-avx-avx2-avx2_128-avx512 | |
RDTSCP usage: enabled | |
TNG support: enabled | |
Hwloc support: disabled | |
Tracing support: disabled | |
Built on: 2018-10-04 12:14:38 | |
Built by: daviddesancho@villin [CMAKE] | |
Build OS/arch: Linux 4.4.0-36-generic x86_64 | |
Build CPU vendor: Intel | |
Build CPU brand: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz | |
Build CPU family: 6 Model: 158 Stepping: 9 | |
Build CPU features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma hle htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp rtm sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic | |
C compiler: /usr/bin/cc GNU 5.4.0 | |
C compiler flags: -march=core-avx2 -O3 -DNDEBUG -funroll-all-loops -fexcess-precision=fast | |
C++ compiler: /usr/bin/c++ GNU 5.4.0 | |
C++ compiler flags: -march=core-avx2 -std=c++11 -O3 -DNDEBUG -funroll-all-loops -fexcess-precision=fast | |
Running on 1 node with total 4 cores, 8 logical cores | |
Hardware detected: | |
CPU info: | |
Vendor: Intel | |
Brand: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz | |
Family: 6 Model: 158 Stepping: 9 | |
Features: aes apic avx avx2 clfsh cmov cx8 cx16 f16c fma hle htt intel lahf mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdrnd rdtscp rtm sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic | |
Hardware topology: Basic | |
Sockets, cores, and logical processors: | |
Socket 0: [ 0 4] [ 1 5] [ 2 6] [ 3 7] | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. | |
Lindahl | |
GROMACS: High performance molecular simulations through multi-level | |
parallelism from laptops to supercomputers | |
SoftwareX 1 (2015) pp. 19-25 | |
-------- -------- --- Thank You --- -------- -------- | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl | |
Tackling Exascale Software Challenges in Molecular Dynamics Simulations with | |
GROMACS | |
In S. Markidis & E. Laure (Eds.), Solving Software Challenges for Exascale 8759 (2015) pp. 3-27 | |
-------- -------- --- Thank You --- -------- -------- | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. | |
Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl | |
GROMACS 4.5: a high-throughput and highly parallel open source molecular | |
simulation toolkit | |
Bioinformatics 29 (2013) pp. 845-54 | |
-------- -------- --- Thank You --- -------- -------- | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl | |
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable | |
molecular simulation | |
J. Chem. Theory Comput. 4 (2008) pp. 435-447 | |
-------- -------- --- Thank You --- -------- -------- | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. | |
Berendsen | |
GROMACS: Fast, Flexible and Free | |
J. Comp. Chem. 26 (2005) pp. 1701-1719 | |
-------- -------- --- Thank You --- -------- -------- | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
E. Lindahl and B. Hess and D. van der Spoel | |
GROMACS 3.0: A package for molecular simulation and trajectory analysis | |
J. Mol. Mod. 7 (2001) pp. 306-317 | |
-------- -------- --- Thank You --- -------- -------- | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
H. J. C. Berendsen, D. van der Spoel and R. van Drunen | |
GROMACS: A message-passing parallel molecular dynamics implementation | |
Comp. Phys. Comm. 91 (1995) pp. 43-56 | |
-------- -------- --- Thank You --- -------- -------- | |
Input Parameters: | |
integrator = sd | |
tinit = 0 | |
dt = 0.002 | |
nsteps = 5000000 | |
init-step = 0 | |
simulation-part = 1 | |
comm-mode = Linear | |
nstcomm = 100 | |
bd-fric = 0 | |
ld-seed = -170014068 | |
emtol = 10 | |
emstep = 0.01 | |
niter = 20 | |
fcstep = 0 | |
nstcgsteep = 1000 | |
nbfgscorr = 10 | |
rtpi = 0.05 | |
nstxout = 0 | |
nstvout = 0 | |
nstfout = 0 | |
nstlog = 1000 | |
nstcalcenergy = 100 | |
nstenergy = 1000 | |
nstxout-compressed = 1000 | |
compressed-x-precision = 1000 | |
cutoff-scheme = Verlet | |
nstlist = 10 | |
ns-type = Grid | |
pbc = xyz | |
periodic-molecules = false | |
verlet-buffer-tolerance = 0.005 | |
rlist = 1 | |
coulombtype = PME | |
coulomb-modifier = Potential-shift | |
rcoulomb-switch = 0 | |
rcoulomb = 1 | |
epsilon-r = 1 | |
epsilon-rf = inf | |
vdw-type = Cut-off | |
vdw-modifier = Potential-shift | |
rvdw-switch = 0 | |
rvdw = 1 | |
DispCorr = No | |
table-extension = 1 | |
fourierspacing = 0.12 | |
fourier-nx = 25 | |
fourier-ny = 25 | |
fourier-nz = 25 | |
pme-order = 4 | |
ewald-rtol = 1e-05 | |
ewald-rtol-lj = 0.001 | |
lj-pme-comb-rule = Geometric | |
ewald-geometry = 0 | |
epsilon-surface = 0 | |
implicit-solvent = No | |
gb-algorithm = Still | |
nstgbradii = 1 | |
rgbradii = 1 | |
gb-epsilon-solvent = 80 | |
gb-saltconc = 0 | |
gb-obc-alpha = 1 | |
gb-obc-beta = 0.8 | |
gb-obc-gamma = 4.85 | |
gb-dielectric-offset = 0.009 | |
sa-algorithm = Ace-approximation | |
sa-surface-tension = 2.05016 | |
tcoupl = No | |
nsttcouple = -1 | |
nh-chain-length = 0 | |
print-nose-hoover-chain-variables = false | |
pcoupl = No | |
pcoupltype = Isotropic | |
nstpcouple = -1 | |
tau-p = 1 | |
compressibility (3x3): | |
compressibility[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
compressibility[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
compressibility[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
ref-p (3x3): | |
ref-p[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
ref-p[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
refcoord-scaling = No | |
posres-com (3): | |
posres-com[0]= 0.00000e+00 | |
posres-com[1]= 0.00000e+00 | |
posres-com[2]= 0.00000e+00 | |
posres-comB (3): | |
posres-comB[0]= 0.00000e+00 | |
posres-comB[1]= 0.00000e+00 | |
posres-comB[2]= 0.00000e+00 | |
QMMM = false | |
QMconstraints = 0 | |
QMMMscheme = 0 | |
MMChargeScaleFactor = 1 | |
qm-opts: | |
ngQM = 0 | |
constraint-algorithm = Lincs | |
continuation = true | |
Shake-SOR = false | |
shake-tol = 0.0001 | |
lincs-order = 4 | |
lincs-iter = 1 | |
lincs-warnangle = 30 | |
nwall = 0 | |
wall-type = 9-3 | |
wall-r-linpot = -1 | |
wall-atomtype[0] = -1 | |
wall-atomtype[1] = -1 | |
wall-density[0] = 0 | |
wall-density[1] = 0 | |
wall-ewald-zfac = 3 | |
pull = false | |
awh = false | |
rotation = false | |
interactiveMD = false | |
disre = No | |
disre-weighting = Conservative | |
disre-mixed = false | |
dr-fc = 1000 | |
dr-tau = 0 | |
nstdisreout = 100 | |
orire-fc = 0 | |
orire-tau = 0 | |
nstorireout = 100 | |
free-energy = yes | |
init-lambda = -1 | |
init-lambda-state = 0 | |
delta-lambda = 0 | |
nstdhdl = 0 | |
n-lambdas = 12 | |
separate-dvdl: | |
fep-lambdas = FALSE | |
mass-lambdas = FALSE | |
coul-lambdas = FALSE | |
vdw-lambdas = TRUE | |
bonded-lambdas = FALSE | |
restraint-lambdas = FALSE | |
temperature-lambdas = FALSE | |
all-lambdas: | |
fep-lambdas = 0 0 0 0 0 0 0 0 0 0 0 0 | |
mass-lambdas = 0 0 0 0 0 0 0 0 0 0 0 0 | |
coul-lambdas = 0 0 0 0 0 0 0 0 0 0 0 0 | |
vdw-lambdas = 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 | |
bonded-lambdas = 0 0 0 0 0 0 0 0 0 0 0 0 | |
restraint-lambdas = 0 0 0 0 0 0 0 0 0 0 0 0 | |
temperature-lambdas = 0 0 0 0 0 0 0 0 0 0 0 0 | |
calc-lambda-neighbors = 1 | |
dhdl-print-energy = no | |
sc-alpha = 0 | |
sc-power = 1 | |
sc-r-power = 6 | |
sc-sigma = 0.3 | |
sc-sigma-min = 0.3 | |
sc-coul = false | |
dh-hist-size = 0 | |
dh-hist-spacing = 0.1 | |
separate-dhdl-file = yes | |
dhdl-derivatives = yes | |
cos-acceleration = 0 | |
deform (3x3): | |
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} | |
simulated-tempering = false | |
swapcoords = no | |
userint1 = 0 | |
userint2 = 0 | |
userint3 = 0 | |
userint4 = 0 | |
userreal1 = 0 | |
userreal2 = 0 | |
userreal3 = 0 | |
userreal4 = 0 | |
applied-forces: | |
electric-field: | |
x: | |
E0 = 0 | |
omega = 0 | |
t0 = 0 | |
sigma = 0 | |
y: | |
E0 = 0 | |
omega = 0 | |
t0 = 0 | |
sigma = 0 | |
z: | |
E0 = 0 | |
omega = 0 | |
t0 = 0 | |
sigma = 0 | |
grpopts: | |
nrdf: 433.757 4911.24 | |
ref-t: 300 300 | |
tau-t: 1 1 | |
annealing: No No | |
annealing-npoints: 0 0 | |
acc: 0 0 0 | |
nfreeze: N N N | |
energygrp-flags[ 0]: 0 | |
The -nsteps functionality is deprecated, and may be removed in a future version. Consider using gmx convert-tpr -nsteps or changing the appropriate .mdp file field. | |
Overriding nsteps with value passed on the command line: 5000 steps, 10 ps | |
Changing nstlist from 10 to 50, rlist from 1 to 1.106 | |
Using 1 MPI thread | |
Using 8 OpenMP threads | |
Pinning threads with an auto-selected logical core stride of 1 | |
System total charge, top. A: -0.000 top. B: -0.000 | |
Will do PME sum in reciprocal space for electrostatic interactions. | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen | |
A smooth particle mesh Ewald method | |
J. Chem. Phys. 103 (1995) pp. 8577-8592 | |
-------- -------- --- Thank You --- -------- -------- | |
Using a Gaussian width (1/beta) of 0.320163 nm for Ewald | |
Potential shift: LJ r^-12: -1.000e+00 r^-6: -1.000e+00, Ewald -1.000e-05 | |
Initialized non-bonded Ewald correction tables, spacing: 9.33e-04 size: 1073 | |
Generated table with 1053 data points for 1-4 COUL. | |
Tabscale = 500 points/nm | |
Generated table with 1053 data points for 1-4 LJ6. | |
Tabscale = 500 points/nm | |
Generated table with 1053 data points for 1-4 LJ12. | |
Tabscale = 500 points/nm | |
Using SIMD 4x8 nonbonded short-range kernels | |
Using a dual 4x8 pair-list setup updated with dynamic pruning: | |
outer list: updated every 50 steps, buffer 0.106 nm, rlist 1.106 nm | |
inner list: updated every 12 steps, buffer 0.001 nm, rlist 1.001 nm | |
At tolerance 0.005 kJ/mol/ps per atom, equivalent classical 1x1 list would be: | |
outer list: updated every 50 steps, buffer 0.232 nm, rlist 1.232 nm | |
inner list: updated every 12 steps, buffer 0.046 nm, rlist 1.046 nm | |
Using full Lennard-Jones parameter combination matrix | |
There are 1 atoms and 0 charges for free energy perturbation | |
Initializing LINear Constraint Solver | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije | |
LINCS: A Linear Constraint Solver for molecular simulations | |
J. Comp. Chem. 18 (1997) pp. 1463-1472 | |
-------- -------- --- Thank You --- -------- -------- | |
The number of constraints is 76 | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
S. Miyamoto and P. A. Kollman | |
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid | |
Water Models | |
J. Comp. Chem. 13 (1992) pp. 952-962 | |
-------- -------- --- Thank You --- -------- -------- | |
Intra-simulation communication will occur every 50 steps. | |
Initial vector of lambda components:[ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] | |
Center of mass motion removal mode is Linear | |
We have the following groups for center of mass motion removal: | |
0: rest | |
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ | |
N. Goga and A. J. Rzepiela and A. H. de Vries and S. J. Marrink and H. J. C. | |
Berendsen | |
Efficient Algorithms for Langevin and DPD Dynamics | |
J. Chem. Theory Comput. 8 (2012) pp. 3637--3649 | |
-------- -------- --- Thank You --- -------- -------- | |
There are: 2627 Atoms | |
Started mdrun on rank 0 Thu Jul 18 09:57:46 2019 | |
Step Time | |
0 0.00000 | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
2.01353e+02 4.00667e+02 3.88943e+02 3.36948e+01 1.12376e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.13766e+03 4.78357e+03 -3.90804e+04 2.49415e+02 -3.07727e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.79380e+03 -2.39789e+04 3.05746e+02 3.30325e+01 1.19776e+02 | |
Constr. rmsd | |
2.28792e-06 | |
Step Time | |
1000 2.00000 | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
2.47040e+02 4.38924e+02 3.80580e+02 2.02703e+01 1.05956e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.07509e+03 5.08194e+03 -3.95281e+04 2.73239e+02 -3.09051e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.93667e+03 -2.39684e+04 3.12176e+02 -1.53521e+02 1.05187e+02 | |
Constr. rmsd | |
1.77294e-06 | |
Step Time | |
2000 4.00000 | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
3.10763e+02 4.23020e+02 3.98769e+02 1.82230e+01 1.04596e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.06925e+03 5.12194e+03 -3.97175e+04 2.64857e+02 -3.10061e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.59510e+03 -2.44110e+04 2.96804e+02 -5.70691e+02 1.28614e+02 | |
Constr. rmsd | |
1.96026e-06 | |
Step Time | |
3000 6.00000 | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
2.76652e+02 4.01297e+02 3.51716e+02 2.86213e+01 1.03946e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.09836e+03 5.04498e+03 -3.94263e+04 2.48457e+02 -3.08723e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.49986e+03 -2.43724e+04 2.92518e+02 -3.77829e+02 1.47757e+02 | |
Constr. rmsd | |
1.13723e-06 | |
Step Time | |
4000 8.00000 | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
2.63492e+02 4.33936e+02 3.71144e+02 2.59051e+01 1.23445e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.06444e+03 4.91638e+03 -3.94856e+04 2.45089e+02 -3.10417e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.48491e+03 -2.45568e+04 2.91845e+02 -5.70980e+02 1.07950e+02 | |
Constr. rmsd | |
2.54877e-06 | |
Step Time | |
5000 10.00000 | |
Writing checkpoint, step 5000 at Thu Jul 18 09:59:36 2019 | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
3.09454e+02 3.95366e+02 4.20552e+02 3.41107e+01 1.06824e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.08207e+03 5.43388e+03 -3.99694e+04 2.37790e+02 -3.09494e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.53149e+03 -2.44179e+04 2.93941e+02 1.84860e+02 1.12813e+02 | |
Constr. rmsd | |
1.58227e-06 | |
<====== ############### ==> | |
<==== A V E R A G E S ====> | |
<== ############### ======> | |
Statistics over 5001 steps using 51 frames | |
Energies (kJ/mol) | |
Bond Angle Proper Dih. Improper Dih. LJ-14 | |
2.62154e+02 4.35169e+02 3.90703e+02 2.25130e+01 1.18153e+02 | |
Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential | |
2.07348e+03 5.06063e+03 -3.95403e+04 2.57767e+02 -3.09198e+04 | |
Kinetic En. Total Energy Temperature Pressure (bar) dVvdw/dl | |
6.66322e+03 -2.42566e+04 2.99869e+02 -3.47364e+01 1.30869e+02 | |
Constr. rmsd | |
0.00000e+00 | |
Total Virial (kJ/mol) | |
2.25903e+03 -3.79681e+01 -1.26974e+02 | |
-3.79463e+01 2.34092e+03 1.28350e+01 | |
-1.26970e+02 1.28019e+01 2.14726e+03 | |
Pressure (bar) | |
-4.83333e+01 4.90309e+01 1.62714e+02 | |
4.90038e+01 -1.41140e+02 -9.58144e+00 | |
1.62709e+02 -9.54046e+00 8.52646e+01 | |
T-Protein T-non-Protein | |
3.00284e+02 2.99833e+02 | |
M E G A - F L O P S A C C O U N T I N G | |
NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels | |
RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table | |
W3=SPC/TIP3p W4=TIP4p (single or pairs) | |
V&F=Potential and force V=Potential only F=Force only | |
Computing: M-Number M-Flops % Flops | |
----------------------------------------------------------------------------- | |
NB Free energy kernel 571103.650890 571103.651 52.4 | |
Pair Search distance check 104.708894 942.380 0.1 | |
NxN Ewald Elec. + LJ [F] 4083.782768 269529.663 24.7 | |
NxN Ewald Elec. + LJ [V&F] 42.063936 4500.841 0.4 | |
NxN Ewald Elec. [F] 3471.179760 211741.965 19.4 | |
NxN Ewald Elec. [V&F] 35.815968 3008.541 0.3 | |
1,4 nonbonded interactions 2.070414 186.337 0.0 | |
Calc Weights 39.412881 1418.864 0.1 | |
Spread Q Bspline 840.808128 1681.616 0.2 | |
Gather F Bspline 840.808128 5044.849 0.5 | |
3D-FFT 2177.235360 17417.883 1.6 | |
Solve PME 3.125625 200.040 0.0 | |
Shift-X 0.265327 1.592 0.0 | |
Bonds 0.480096 28.326 0.0 | |
Angles 1.460292 245.329 0.0 | |
Propers 2.080416 476.415 0.0 | |
Impropers 0.270054 56.171 0.0 | |
Virial 0.136272 2.453 0.0 | |
Update 13.137627 407.266 0.0 | |
Stop-CM 0.133977 1.340 0.0 | |
Calc-Ekin 0.530654 14.328 0.0 | |
Lincs 0.760152 45.609 0.0 | |
Lincs-Mat 2.160432 8.642 0.0 | |
Constraint-V 26.095218 208.762 0.0 | |
Constraint-Vir 0.129183 3.100 0.0 | |
Settle 8.191638 2645.899 0.2 | |
----------------------------------------------------------------------------- | |
Total 1090921.862 100.0 | |
----------------------------------------------------------------------------- | |
R E A L C Y C L E A N D T I M E A C C O U N T I N G | |
On 1 MPI rank, each using 8 OpenMP threads | |
Computing: Num Num Call Wall time Giga-Cycles | |
Ranks Threads Count (s) total sum % | |
----------------------------------------------------------------------------- | |
Neighbor search 1 8 101 0.547 15.741 0.5 | |
Force 1 8 5001 104.463 3008.513 94.5 | |
PME mesh 1 8 5001 1.333 38.378 1.2 | |
NB X/F buffer ops. 1 8 9901 3.627 104.456 3.3 | |
Write traj. 1 8 6 0.017 0.482 0.0 | |
Update 1 8 10002 0.256 7.373 0.2 | |
Constraints 1 8 10002 0.196 5.635 0.2 | |
Rest 0.068 1.964 0.1 | |
----------------------------------------------------------------------------- | |
Total 110.506 3182.542 100.0 | |
----------------------------------------------------------------------------- | |
Breakdown of PME mesh computation | |
----------------------------------------------------------------------------- | |
PME spread 1 8 5001 0.472 13.586 0.4 | |
PME gather 1 8 5001 0.345 9.936 0.3 | |
PME 3D-FFT 1 8 10002 0.427 12.311 0.4 | |
PME solve Elec 1 8 5001 0.039 1.134 0.0 | |
----------------------------------------------------------------------------- | |
Core t (s) Wall t (s) (%) | |
Time: 884.045 110.506 800.0 | |
(ns/day) (hour/ns) | |
Performance: 7.820 3.069 | |
Finished mdrun on rank 0 Thu Jul 18 09:59:36 2019 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
integrator = sd | |
dt = 0.002 ; in ps | |
nsteps = 5000000 | |
nstlog = 1000 | |
nstenergy = 1000 | |
;energygrps = Protein non-Protein | |
nstxout-compressed = 1000 | |
compressed-x-grps = non-Water | |
continuation = yes | |
constraint_algorithm = lincs | |
constraints = h-bonds | |
lincs_iter = 1 | |
lincs_order = 4 | |
nstlist = 10 | |
ns_type = grid | |
cutoff-scheme = verlet | |
coulombtype = pme | |
rvdw = 1. | |
rcoulomb = 1. | |
tc_grps = protein non-protein | |
tau_t = 1 1 | |
ref_t = 300.0 300.0 | |
Pcoupl = no | |
gen_vel = no | |
; H-REPLEX | |
free-energy = yes | |
init-lambda-state = 0 | |
nstdhdl = 0 | |
vdw_lambdas = 0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment