Created
December 10, 2016 21:48
-
-
Save daviddoria/36032bbd699a07f38b6a982a78dafc1c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <opencv2/ml/ml.hpp> | |
#include <opencv2/core/core.hpp> | |
#include <opencv2/highgui/highgui.hpp> | |
#include <opencv2/imgproc.hpp> | |
int main(int, char**) | |
{ | |
// Data for visual representation | |
int width = 512, height = 512; | |
cv::Mat image = cv::Mat::zeros(height, width, CV_8UC3); | |
// Set up training data | |
const size_t numberOfSamples = 4; | |
//size_t numberOfSamples = 4; | |
//int labels[numberOfSamples] = { 1, -1, -1, -1 }; | |
//cv::Mat labelsMat(numberOfSamples, 1, CV_32SC1, labels); | |
cv::Mat1i labelsMat(numberOfSamples, 1); | |
labelsMat(0, 0) = 1; | |
labelsMat(1, 0) = -1; | |
labelsMat(2, 0) = -1; | |
labelsMat(3, 0) = -1; | |
// float trainingData[numberOfSamples][2] = { { 501, 10 }, { 255, 10 }, { 501, 255 }, { 10, 501 } }; | |
// cv::Mat trainingDataMat(numberOfSamples, 2, CV_32FC1, trainingData); | |
cv::Mat1f trainingDataMat(numberOfSamples, 2); | |
// Sample 0 | |
trainingDataMat(0, 0) = 501; | |
trainingDataMat(0, 1) = 10; | |
// Sample 1 | |
trainingDataMat(1, 0) = 255; | |
trainingDataMat(1, 1) = 10; | |
// Sample 2 | |
trainingDataMat(2, 0) = 501; | |
trainingDataMat(2, 1) = 255; | |
// Sample 3 | |
trainingDataMat(3, 0) = 10; | |
trainingDataMat(3, 1) = 501; | |
// Set up SVM's parameters | |
//cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create(); | |
cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create(); | |
svm->setType(cv::ml::SVM::C_SVC); | |
svm->setKernel(cv::ml::SVM::LINEAR); | |
svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::MAX_ITER, 100, 1e-6)); | |
// Train the SVM with given parameters | |
cv::Ptr<cv::ml::TrainData> td = cv::ml::TrainData::create(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat); | |
// svm->train(td); | |
// Or train the SVM with optimal parameters | |
svm->trainAuto(td); | |
cv::Vec3b green(0, 255, 0), blue(255, 0, 0), red(0, 0, 255); | |
// Show the decision regions given by the SVM | |
for (int i = 0; i < image.rows; ++i) { | |
for (int j = 0; j < image.cols; ++j) { | |
cv::Mat sampleMat = (cv::Mat_<float>(1, 2) << j, i); | |
float response = svm->predict(sampleMat); | |
if (response == 1) { | |
image.at<cv::Vec3b>(i, j) = green; | |
} | |
else if (response == -1) { | |
image.at<cv::Vec3b>(i, j) = blue; | |
} | |
else { | |
//std::cout << response << std::endl; | |
image.at<cv::Vec3b>(i, j) = red; | |
} | |
} | |
} | |
// Show the training data | |
int thickness = -1; | |
int lineType = 8; | |
for(size_t sampleID = 0; sampleID < numberOfSamples; ++sampleID) { | |
cv::Scalar color; | |
if(labelsMat(sampleID, 0) == 1) { | |
color = cv::Scalar(0,0,0); | |
} | |
else { | |
color = cv::Scalar(255,255,255); | |
} | |
cv::circle(image, cv::Point(trainingDataMat(sampleID, 0), | |
trainingDataMat(sampleID, 1)), 5, color, thickness, lineType); | |
} | |
// Show support vectors | |
thickness = 2; | |
lineType = 8; | |
cv::Mat sv = svm->getSupportVectors(); | |
for (int i = 0; i < sv.rows; ++i) { | |
const float* v = sv.ptr<float>(i); | |
std::cout << v[0] << " " << v[1] << std::endl; | |
circle(image, cv::Point((int)v[0], (int)v[1]), 6, cv::Scalar(128, 128, 128), thickness, lineType); | |
} | |
cv::imwrite("result.png", image); // save the image | |
cv::imshow("SVM Simple Example", image); // show it to the user | |
cv::waitKey(0); | |
return EXIT_SUCCESS; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment