Created
March 22, 2018 02:03
-
-
Save davidnvq/aa33f7bb7859dfea0fa8d22c2c4299fd to your computer and use it in GitHub Desktop.
Random crop image
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.preprocessing.image import ImageDataGenerator,standardize,random_transform | |
# input generator with standardization on | |
datagenX = ImageDataGenerator( | |
featurewise_center=True, | |
featurewise_std_normalization=True, | |
featurewise_standardize_axis=(0, 2, 3), | |
rotation_range=180, | |
width_shift_range=0.2, | |
height_shift_range=0.2, | |
horizontal_flip=True, | |
fill_mode='reflect', | |
seed=0, | |
verbose=1) | |
# output generator with standardization off | |
datagenY = ImageDataGenerator( | |
featurewise_center=False, | |
featurewise_std_normalization=False, | |
rotation_range=180, | |
width_shift_range=0.2, | |
height_shift_range=0.2, | |
horizontal_flip=True, | |
fill_mode='reflect', | |
seed=0) | |
def center_crop(x, center_crop_size, **kwargs): | |
centerw, centerh = x.shape[1]//2, x.shape[2]//2 | |
halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2 | |
return x[:, centerw-halfw:centerw+halfw,centerh-halfh:centerh+halfh] | |
def random_crop(x, random_crop_size, sync_seed=None, **kwargs): | |
np.random.seed(sync_seed) | |
w, h = x.shape[1], x.shape[2] | |
rangew = (w - random_crop_size[0]) // 2 | |
rangeh = (h - random_crop_size[1]) // 2 | |
offsetw = 0 if rangew == 0 else np.random.randint(rangew) | |
offseth = 0 if rangeh == 0 else np.random.randint(rangeh) | |
return x[:, offsetw:offsetw+random_crop_size[0], offseth:offseth+random_crop_size[1]] | |
datagenX.config['random_crop_size'] = (800, 800) | |
datagenY.config['random_crop_size'] = (800, 800) | |
datagenX.config['center_crop_size'] = (512, 512) | |
datagenY.config['center_crop_size'] = (360, 360) | |
# customize the pipeline | |
datagenX.set_pipeline([random_crop, random_transform, standardize, center_crop]) | |
datagenY.set_pipeline([random_crop, random_transform, center_crop]) | |
# flow from directory is extended to support more format and also you can even use your own reader function | |
# here is an example of reading image data saved in csv file | |
# datagenX.flow_from_directory(csvFolder, image_reader=csvReaderGenerator, read_formats={'csv'}, reader_config={'target_size':(572,572),'resolution':20, 'crange':(0,100)}, class_mode=None, batch_size=1) | |
dgdx= datagenX.flow_from_directory(inputDir, class_mode=None, read_formats={'png'}, batch_size=2) | |
dgdy= datagenY.flow_from_directory(outputDir, class_mode=None, read_formats={'png'}, batch_size=2) | |
# you can now fit a generator as well | |
datagenX.fit_generator(dgdx, nb_iter=100) | |
# here we sychronize two generator and combine it into one | |
train_generator = dgdx+dgdy | |
model.fit_generator( | |
train_generator, | |
samples_per_epoch=2000, | |
nb_epoch=50, | |
validation_data=validation_generator, | |
nb_val_samples=800) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment