This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import multiprocessing as mp | |
import ai2thor.controller | |
import numpy as np | |
import time | |
import os | |
actions = [ | |
'MoveAhead', | |
'MoveBack', | |
'MoveRight', |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://github.com/pytorch/examples/blob/master/imagenet/main.py#L392-L396 | |
def adjust_learning_rate(optimizer, epoch, args): | |
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" | |
lr = args.lr * (0.1 ** (epoch // 30)) | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
# Create a learning rate adjustment function that divides the learning rate by 10 every 30 epochs | |
def adjust_learning_rate(epoch): |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence | |
class DynamicRNN(nn.Module): | |
""" | |
The wrapper version of recurrent modules including RNN, LSTM | |
that support packed sequence batch. | |
""" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
from torch.nn import functional as F | |
""" | |
Blog post: | |
Taming LSTMs: Variable-sized mini-batches and why PyTorch is good for your health: | |
https://medium.com/@_willfalcon/taming-lstms-variable-sized-mini-batches-and-why-pytorch-is-good-for-your-health-61d35642972e | |
""" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding:UTF-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
def weight_init(m): | |
''' |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Using two packages `tmux` (Ctrl+B) and `screen` (Ctrl+A): | |
#1. Create a new session: | |
#tmux | |
tmux new -s session_name | |
#screen | |
screen -S session_name | |
#2. Attach to the session: |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib | |
import matplotlib.pyplot as plt | |
def colorize(words, color_array): | |
# words is a list of words | |
# color_array is an array of numbers between 0 and 1 of length equal to words | |
cmap = matplotlib.cm.get_cmap('RdBu') | |
template = '<span class="barcode"; style="color: black; background-color: {}">{}</span>' | |
colored_string = '' |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
A bare bones examples of optimizing a black-box function (f) using | |
Natural Evolution Strategies (NES), where the parameter distribution is a | |
gaussian of fixed standard deviation. | |
""" | |
import numpy as np | |
np.random.seed(0) | |
# the function we want to optimize |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
import numpy as np | |
import cPickle as pickle | |
import gym | |
# hyperparameters | |
H = 200 # number of hidden layer neurons | |
batch_size = 10 # every how many episodes to do a param update? | |
learning_rate = 1e-4 | |
gamma = 0.99 # discount factor for reward |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
NewerOlder