Skip to content

Instantly share code, notes, and snippets.

@dawbarton
Created July 24, 2018 14:59
Show Gist options
  • Save dawbarton/0fcbb2eef967e841791181ac4881d83f to your computer and use it in GitHub Desktop.
Save dawbarton/0fcbb2eef967e841791181ac4881d83f to your computer and use it in GitHub Desktop.
Flutter rig code
function predict(prevtarget::Vector{T}, s = 1.0) where T <: AbstractArray
secant = prevtarget[end] - prevtarget[end-1]
(prevtarget[end] + s*secant, secant)
end
function correct!(expt, target::AbstractVector)
correct!(expt, target, zeros(target))
end
function correct!(expt, target::T, tangent::T; print=false) where T <: AbstractVector
h = 1e-5
itr = 1
Δ = zeros(target)
target0 = copy(target)
target2 = copy(target)
while true
settarget!(expt, target)
achieved = getachieved!(expt) # runs the experiment and returns the result
pseudoarclength = dot(target0 - target, tangent)
res = [target[1:end-1] - achieved[1:end-1]; pseudoarclength]
res[1] *= 50
if (norm(res) < 1e-7) && (norm(Δ) < 1e-7)
return true
elseif itr >= 20
return false
end
if print
println("[correct!] Itr $itr: f = $(norm(res)), Δf = $(norm(Δ))")
end
# Get derivative wrt target[1] using a finite difference
target2 .= target
target2[1] += h
settarget!(expt, target2)
achieved2 = getachieved!(expt)
pseudoarclength = dot(target0 - target2, tangent)
res2 = [target2[1:end-1] - achieved2[1:end-1]; pseudoarclength]
res2[1] *= 50
# Construct the Jacobian matrix
J = eye(length(res))
J[:, 1] .= (res2 - res)/h
# Newton iteration (with implicit Picard iteration since it's not a full Jacobian)
Δ = J \ res
target .= target .- Δ
itr += 1
end
end
function continuation!(expt::T, step=-0.1) where T
prevexpt = Vector{T}()
prevtarget = Vector{Vector{Float64}}()
target = Vector(gettarget(expt))
if ! correct!(expt, target)
println("Correction failed")
return (prevexpt, prevtarget)
end
push!(prevexpt, deepcopy(expt)) # save the corrected point
push!(prevtarget, copy(target))
println("It -1: $target")
target[end] += step
correct!(expt, target)
if ! correct!(expt, target)
println("Correction failed")
return (prevexpt, prevtarget)
end
push!(prevexpt, deepcopy(expt)) # save the corrected point
push!(prevtarget, copy(target))
println("It 0: $target")
for i = 1:100
(target, secant) = predict(prevtarget)
if ! correct!(expt, target, secant, print=true)
println("Correction failed")
return (prevexpt, prevtarget)
end
push!(prevexpt, deepcopy(expt)) # save the corrected point
push!(prevtarget, copy(target))
println("It $i: $target")
end
(prevexpt, prevtarget)
end
using StaticArrays
using OrdinaryDiffEq
using QuadGK
#--- Parameters
mutable struct qs2dofParameters{T}
m_t::Float64
m_w::Float64
s::Float64
b::Float64
a::Float64
x_a::Float64
r_θ::Float64
I_θ::Float64
ξ_h::Float64
ξ_θ::Float64
ω_h::Float64
ω_θ::Float64
d_h::Float64
d_θ::Float64
k_h::Float64
k_θ::Float64
ρ::Float64
k_θ₁::Float64
k_θ₂::Float64
k_h₁::Float64
k_h₂::Float64
U::Float64
control::T
end
function qs2dofParameters(control)
# Default parameters
m_t = 90.0 # 3.836 # total mass of the system. increasing the frequency is less
m_w = 25.0 #1.0662 # mass of the wing
s = 0.62 #0.6 # wing span
b = 0.15 #0.0325 # half the length of the wing/semichord - decrease h is lco as well
a = -0.5 # position of elastic axis relative to the semichord
x_a = 0.02/b #0.5 # nondimensional distance between centre of gravity and elastic axis - a/b
r_θ = 0.3 # ?
I_θ = m_t*(b^2)*(r_θ^2) #0.0004438 # moment of inertia m_t*(b^2)*(r_θ^2)
ξ_h = 0.04 #0.0735 # damping factor for heave
ξ_θ = 0.15 #0.3#0.3 # damping factor for pitch
ω_h = 14.0 #20 # natural freq for heave
ω_θ = 10.0 # natural freq for pitch
d_h = ξ_h*2*ω_h*m_w # 0.011 # damping coefficient for heave? I use the damping factor
d_θ = ξ_θ*2*ω_θ*I_θ #0.0115 # damping coefficient for pitch? I use the damping factor
k_h = ω_h^2*m_t #895.1 # heave stiffness - change freq
k_θ = ω_θ^2*I_θ #0.942 # pitch stiffness
ρ = 1.204 # air density
k_θ₁ = 1.0 #3*3.95 # nonlinear pitch stiffness (quadratic)
k_θ₂ = 1000.0 #307 # nonlinear pitch stiffness (cubic)
k_h₁ = 1.0 # nonlinear heave stiffness (quadratic)
k_h₂ = 1000.0 # nonlinear heave stiffness (cubic)
U = 15.0
return qs2dofParameters(m_t, m_w, s, b, a, x_a, r_θ, I_θ, ξ_h, ξ_θ, ω_h, ω_θ,
d_h, d_θ, k_h, k_θ, ρ, k_θ₁, k_θ₂, k_h₁, k_h₂, U, control)
end
Base.getindex(p::qs2dofParameters, i) = p.U
Base.setindex!(p::qs2dofParameters, val, i) = (p.U = val)
#--- Equations of motion
function qs2dofRHS(x, p::qs2dofParameters{T}, t) where T
# State variables
h = x[1]
dh = x[2]
θ = x[3]
dθ = x[4]
# Structural mass matrix
Ms₁₁ = p.m_t
Ms₁₂ = p.m_w*p.x_a*p.b
Ms₂₁ = p.m_w*p.x_a*p.b
Ms₂₂ = p.I_θ
# Aerodynamic mass matrix
Ma₁₁ = -π*p.ρ*(p.b^2)
Ma₁₂ = π*p.ρ*(p.b^3)*p.a
Ma₂₁ = π*p.ρ*(p.b^3)*p.a
Ma₂₂ = -π*p.ρ*(p.b^4)*(0.125+p.a^2)
# Resulting mass matrix
m₁ = Ms₁₁ - Ma₁₁
m₂ = Ms₁₂ - Ma₁₂
m₃ = Ms₂₁ - Ma₂₁
m₄ = Ms₂₂ - Ma₂₂
Q = dh + p.b*(0.5-p.a)*dθ + p.U*θ
# Structural Stiffness
Fs_θ = p.k_θ*θ + p.k_θ₁*(θ^2) + p.k_θ₂*(θ^3)
Fs_h = p.k_h*h + p.k_h₁*(h^2) + p.k_h₂*(h^3)
# Control input
if p.control != nothing
u = p.control(x)
else
u = 0.0
end
# RHS
RHS1 = -2*π*p.ρ*p.b*p.U*Q - π*p.ρ*(p.b^2)*p.U*dθ - p.d_h*dh - Fs_h + u
RHS2 = 2*π*p.ρ*(p.b^2)*p.U*(p.a+0.5)*Q - p.d_θ*dθ - Fs_θ - π*p.ρ*(p.b^3)*(0.5-p.a)*p.U*dθ
# Accelerations
ddh = (m₄*RHS1 - m₂*RHS2)/(m₄*m₁ - m₂*m₃)
ddθ = (m₃*RHS1 - m₁*RHS2)/(m₂*m₃ - m₄*m₁)
# State Derivatives
SVector(dh, ddh, dθ, ddθ)
end
#--- Controllers
# Proportional control: use a structure to store the necessary info
mutable struct ProportionalControl
Kp::Float64
T::Float64
A₀::Float64
A₁::Float64
end
function (control::ProportionalControl)(x)
h = x[1]
dh = x[2]
B₁ = -2π/control.T*control.A₁
ϕ = atan2(dh/B₁, (h - control.A₀)/control.A₁)
control.Kp*(control.A₀ + control.A₁*cos(ϕ) - h)
end
proportionalcontrol() = ProportionalControl(0.0, 1.0, 0.0, 1.0)
gettarget(control::ProportionalControl) = SVector(control.A₁, control.A₀, control.T)
settarget!(control::ProportionalControl, val) = (control.A₁ = val[1]; control.A₀ = val[2]; control.T = val[3])
function getachieved(control::ProportionalControl, sol, te)
t₀ = te[end-1]
t₁ = te[end]
T = t₁ - t₀
c = quadgk(t -> SVector(1.0, 2*cos(2π*t), 2*sin(2π*t))*sol(t₀ + t*T)[1], 0.0, 1.0)[1]
SVector{3, Float64}(sqrt(c[2]^2 + c[3]^2), c[1], T)
end
#--- Experiment
struct qs2dofExperiment{T}
p::qs2dofParameters{T}
x₀::MVector{4, Float64}
end
function qs2dofExperiment(; x₀=MVector(0.1, 0.0, 0.0, 0.0), p=nothing, control=proportionalcontrol())
if p == nothing
p = qs2dofParameters(control)
end
qs2dofExperiment(p, x₀)
end
function simulate!(expt::qs2dofExperiment, t::Float64, x₀::AbstractVector)
prob = ODEProblem(qs2dofRHS, SVector{4, Float64}(x₀), (0.0, t), expt.p)
solve(prob, Vern6(), dtmax=0.02) # Vern6 for reasonably high accuracy, max stepsize 0.02
end
function simulate!(expt::qs2dofExperiment, t::Float64)
sol = simulate!(expt, t, expt.x₀)
expt.x₀ .= sol[:, end]
sol
end
function simulate!(expt::qs2dofExperiment, te::Vector{Float64}, t::Float64, x₀::AbstractVector)
prob = ODEProblem(qs2dofRHS, SVector{4, Float64}(x₀), (0.0, t), expt.p)
solve(prob, Vern6(), dtmax=0.02) # Vern6 for reasonably high accuracy, max stepsize 0.02
cb = ContinuousCallback((u, t, integrator) -> u[2], # event function; fires when u[2] is zero (Poincare map)
integrator -> push!(te, integrator.t), # callback when event function goes positive; store the event time
nothing) # callback when event function goes negative
sol = solve(prob, Vern6(), callback=cb, dtmax=0.02) # Vern6 for reasonably high accuracy, max stepsize 0.02
end
function simulate!(expt::qs2dofExperiment, te::Vector{Float64}, t::Float64)
sol = simulate!(expt, te, t, expt.x₀)
expt.x₀ .= sol[:, end]
sol
end
gettarget(expt::qs2dofExperiment) = [gettarget(expt.p.control); SVector(expt.p.U)]
settarget!(expt::qs2dofExperiment, val) = (settarget!(expt.p.control, val); expt.p.U = val[end]; nothing)
function getachieved!(expt::qs2dofExperiment)
te = Vector{Float64}()
sol = simulate!(expt, te, 20.0)
[getachieved(expt.p.control, sol, te); SVector(expt.p.U)]
end
include("MATLABPlots.jl")
include("qs2dof.jl")
include("cbc.jl")
expt = qs2dofExperiment()
target = Vector(getachieved!(expt))
settarget!(expt, target)
expt.p.control.Kp = 10000
expt2 = qs2dofExperiment()
settarget!(expt2, target)
# TODO: Code up a shooting method to find the ground truth for the bifurcation
# diagram. Is the control failing at the bifurcation point because it is rubbish
# or because we're miles away from the solution?
U = 15:-0.1:1
A₁ = Float64[]
for u in U
target[4] = u
if ! correct!(expt, target, zeros(target), print=true)
break
end
push!(A₁, gettarget(expt)[1])
end
plot(U[1:length(A₁)], A₁, ".")
A₁2 = Float64[]
for u in U
target[4] = u
settarget!(expt2, target)
push!(A₁2, getachieved!(expt2)[1])
end
plot!(U[1:length(A₁2)], A₁2, "r.")
(expts, targets) = continuation!(expt)
U = [target[4] for target in targets]
A₁ = [target[1] for target in targets]
plot(U, A₁, ".")
(sol, te) = expt()
plot(sol.t, sol[1,:])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment