Created
May 1, 2021 11:19
-
-
Save dbalabka/439a76cd182338f64ad4269d77a4f693 to your computer and use it in GitHub Desktop.
Bootstrapping hypothesis testing of distribution equality using Efron's alghoritm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Tuple | |
import numpy as np | |
import time | |
import numba | |
from scipy.stats import mannwhitneyu | |
@numba.njit(parallel=True, fastmath=True, nogil=True) | |
def compare_dist(z: np.ndarray, y: np.ndarray, n_samples: int = 10_000) -> Tuple[np.ndarray, float, float]: | |
n = z.shape[0] | |
m = y.shape[0] | |
x = np.concatenate((z, y)) | |
t_obs = z.mean() - y.mean() | |
t = np.zeros(n_samples) | |
for i in numba.prange(n_samples): | |
x_ = np.random.choice(x, n + m) | |
t[i] = x_[:n].mean() - x_[m:].mean() | |
return t, t_obs, float(np.sum(np.greater_equal(t, t_obs)) / n_samples) | |
np.random.seed(42) | |
size = 100_000 | |
z = np.random.normal(0.00005, 0.5, size) | |
y = np.random.normal(0, 0.5, size) | |
n_samples = 10_000 | |
start = time.time() | |
t = compare_dist(z, y, n_samples) | |
print(f'p-value: {t[2]}') | |
end = time.time() | |
print(end - start) | |
start = time.time() | |
t = mannwhitneyu(z, y) | |
print(f'p-value: {t[1]}') | |
end = time.time() | |
print(end - start) | |
# Numba debug | |
# bootstrap.compare_dist.parallel_diagnostics(level=4) | |
# bootstrap.compare_dist.inspect_types() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment