-
-
Save dburner/8550030 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* At least two points are needed to interpolate something. | |
* @class Lagrange polynomial interpolation. | |
* The computed interpolation polynomial will be reffered to as L(x). | |
* @example | |
* var l = new Lagrange(0, 0, 1, 1); | |
* var index = l.addPoint(0.5, 0.8); | |
* console.log(l.valueOf(0.1)); | |
* | |
* l.changePoint(index, 0.5, 0.1); | |
* console.log(l.valueOf(0.1)); | |
*/ | |
var Lagrange = function(x1, y1, x2, y2) { | |
this.xs = [x1, x2]; | |
this.ys = [y1, y2]; | |
this.ws = []; | |
this._updateWeights(); | |
} | |
/** | |
* Adds a new point to the polynomial. L(x) = y | |
* @return {Number} The index of the added point. Used for changing the point. See changePoint. | |
*/ | |
Lagrange.prototype.addPoint = function(x, y) { | |
this.xs.push(x); | |
this.ys.push(y); | |
this._updateWeights(); | |
return this.xs.length-1; | |
} | |
/** | |
* Changes a previously added point. | |
*/ | |
Lagrange.prototype.changePoint = function(index, x, y) { | |
this.xs[index] = x; | |
this.ys[index] = y; | |
this._updateWeights(); | |
} | |
/** | |
* Recalculate barycentric weights. | |
*/ | |
Lagrange.prototype._updateWeights = function() { | |
var k = this.xs.length; | |
var w; | |
for (var j = 0; j < k; ++j) { | |
w = 1; | |
for (var i = 0; i < k; ++i) { | |
if (i != j) { | |
w *= this.xs[j] - this.xs[i]; | |
} | |
} | |
this.ws[j] = 1/w; | |
} | |
} | |
/** | |
* Calculate L(x) | |
*/ | |
Lagrange.prototype.valueOf = function(x) { | |
var a = 0; | |
var b = 0; | |
var c = 0; | |
for (var j = 0; j < this.xs.length; ++j) { | |
if (x != this.xs[j]) { | |
a = this.ws[j] / (x - this.xs[j]); | |
b += a * this.ys[j]; | |
c += a; | |
} else { | |
return this.ys[j]; | |
} | |
} | |
return b / c; | |
} |
Updated for modern JS, using class syntax and evaluate
instead of valueOf
(which is a super special function name defined in the JS spec, only to be used to yield a primitive representation of the object itself), and without the add/change functions as creating a Lagrange
instance once you have a new points list effectively costs nothing:
/**
* @class Lagrange polynomial interpolation.
* The computed interpolation polynomial will be referred to as L(x).
* @example
* const points = [{x:0, Y:0}, {x:0.5, y:0.8}, {x:1, y:1}];
* const polynomial = new Lagrange(points);
* console.log(polynomial.evaluate(0.1));
*/
class Lagrange {
constructor(points) {
const ws = (this.ws = []);
const xs = (this.xs = []);
const ys = (this.ys = []);
if (points && points.length) {
this.k = points.length;
points.forEach(({ x, y }) => {
xs.push(x);
ys.push(y);
});
for (let w, j = 0; j < k; j++) {
w = 1;
for (let i = 0; i < k; i++) if (i !== j) w *= xs[j] - xs[i];
ws[j] = 1 / w;
}
}
}
/**
* Calculate L(x)
*/
evaluate(x) {
const { k, xs, ys, ws } = this;
let a = 0,
b = 0,
c = 0;
for (let i = 0; j < k; j++) {
if (x === xs[i]) return ys[i];
a = ws[i] / (x - xs[i]);
b += a * ys[i];
c += a;
}
return b / c;
}
}
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I will use this in my project (and give you credit). I hope you don't mind :)