-
-
Save dburner/c3e594b8e14de98d826c5c1fa290ca10 to your computer and use it in GitHub Desktop.
Variable sentence size CNN + RNN with Keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# vocabulary = OrderedDict() | |
input_length = None | |
vocabulary_size = max(vocabulary.values()) + 1 | |
weights_w2v = list(map(Word2Vec.__getitem__, vocabulary.keys())) | |
embedding_size len(weights_w2v[0]) | |
nb_classes = 5 | |
# CNN hyperparms | |
nb_filter = 64 | |
filter_length = 5 | |
border_mode = 'valid' | |
padding = filter_length // 2 | |
stride = 1 | |
sequence_text = Input(name='input_source', shape=(input_length,), dtype='int32') | |
embedded_text = Embedding(vocabulary_size, embedding_size, input_length=input_length, weights=[weights_w2v])(sequence_text) | |
cnn1d_text_pad = ZeroPadding1D(padding)(embedded_text) | |
cnn1d_text = Convolution1D(nb_filter=nb_filter, filter_length=filter_length, | |
border_mode=border_mode, subsample_length=stride, activation='relu')(cnn1d_text_pad) | |
rnn_text = RNN(self.nb_hidden, return_sequences=True, activation='relu')(cnn1d_text) | |
drop_text = Dropout(0.5)(rnn_text) | |
output_text = TimeDistributed(Dense(output_dim=nb_classes, activation='softmax'), name='output_source')(drop_text) | |
text_model = Model(input=[sequence_text], output=output_text) | |
text_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) | |
def get_batch(data_in, data_out): | |
lengths = list(set(map(len, data_in))) | |
data_by_length = {} | |
for i, l in enumerate(map(len, data_in)): | |
if l not in data_by_length: | |
data_by_length[l] = [] | |
data_by_length[l].append(i) | |
while True: # a new epoch | |
np.random.shuffle(lengths) | |
for length in lengths: | |
indexes = data_by_length[length] | |
np.random.shuffle(indexes) | |
input_data = {'input_source': np.array([data_in[i] for i in indexes])} | |
output_data = {'output_source': np.array([data_out[i] for i in indexes])} | |
yield (input_data, output_data) | |
text_model.fit_generator(get_batch(X_train, Y_train), | |
samples_per_epoch=len(X_train), | |
validation_data=get_batch(X_test, Y_train), | |
nb_val_samples=len(X_test), | |
nb_epoch=10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment