Last active
August 29, 2015 14:21
-
-
Save dceoy/b33beb466680808f3d6e to your computer and use it in GitHub Desktop.
[R] Logistic Regression using glm https://rawgit.com/dceoy/b33beb466680808f3d6e/raw/plot.svg
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env Rscript | |
# Diabetes survey on Pima Indians | |
# | |
# variables: | |
# 'glucose' Plasma glucose concentration at 2 hours in an oral glucose tolerance test | |
# 'diabetes' Diabetes pedigree function | |
# 'test' test whether the patient shows signs of diabetes (coded 0 if negative, 1 if positive) | |
data(pima, package = 'faraway') | |
# | |
# Logistic Regression | |
# | |
m <- glm(factor(test) ~ glucose + diabetes, family = binomial, data = pima) | |
print(summary(m)) | |
# | |
# Call: | |
# glm(formula = test ~ glucose + diabetes, family = binomial, data = pima) | |
# | |
# Deviance Residuals: | |
# Min 1Q Median 3Q Max | |
# -2.7557 -0.7801 -0.5295 0.8460 3.2897 | |
# | |
# Coefficients: | |
# Estimate Std. Error z value Pr(>|z|) | |
# (Intercept) -5.724331 0.447126 -12.803 < 2e-16 *** | |
# glucose 0.037356 0.003284 11.375 < 2e-16 *** | |
# diabetes 0.918678 0.273089 3.364 0.000768 *** | |
# --- | |
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
# | |
# (Dispersion parameter for binomial family taken to be 1) | |
# | |
# Null deviance: 993.48 on 767 degrees of freedom | |
# Residual deviance: 796.99 on 765 degrees of freedom | |
# AIC: 802.99 | |
# | |
# Number of Fisher Scoring iterations: 4 | |
# | |
# Alpha Level | |
alpha <- 0.05 | |
results <- list() | |
# | |
# Profile Likelihood CI | |
# | |
results$profile_likelihood_ci <- confint(m, level = 1 - alpha) | |
# | |
# Wald CI | |
# | |
results$wald_ci <- confint.default(m, level = 1 - alpha) | |
# | |
# Wald CI (manual calculation) | |
# | |
wald_ci <- function(model, alpha) { | |
ce <- summary(model)$coefficients[,1:2] | |
ci <- cbind(ce[,1] - qnorm(1 - alpha / 2) * ce[,2], | |
ce[,1] + qnorm(1 - alpha / 2) * ce[,2]) | |
colnames(ci) <- c(paste((alpha / 2) * 100, '%'), | |
paste((1 - alpha / 2) * 100, '%')) | |
return(ci) | |
} | |
results$wald_ci_manual_calc <- wald_ci(m, alpha) | |
# | |
# Odds Ratio | |
# | |
results$odds_ratio <- exp(cbind(Estimate = m$coefficients, confint(m, level = 1 - alpha))) | |
print(results) | |
# | |
# $profile_likelihood_ci | |
# 2.5 % 97.5 % | |
# (Intercept) -6.62859431 -4.87394015 | |
# glucose 0.03109338 0.04398227 | |
# diabetes 0.38948850 1.46127936 | |
# | |
# $wald_ci | |
# 2.5 % 97.5 % | |
# (Intercept) -6.60068146 -4.84798018 | |
# glucose 0.03091909 0.04379221 | |
# diabetes 0.38343319 1.45392188 | |
# | |
# $wald_ci_manual_calc | |
# 2.5 % 97.5 % | |
# (Intercept) -6.60068146 -4.84798018 | |
# glucose 0.03091909 0.04379221 | |
# diabetes 0.38343319 1.45392188 | |
# | |
# $odds_ratio | |
# Estimate 2.5 % 97.5 % | |
# (Intercept) 0.003265538 0.00132202 0.007643191 | |
# glucose 1.038062146 1.03158183 1.044963828 | |
# diabetes 2.505974144 1.47622552 4.311471930 | |
# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env R | |
sapply(c('dplyr', 'data.table', 'ggplot2'), function(p) require(p, character.only = TRUE)) | |
select <- dplyr::select | |
# Diabetes survey on Pima Indians | |
data(pima, package = 'faraway') | |
# | |
# Logistic Regression | |
# | |
m <- glm(factor(test) ~ glucose + diabetes, family = binomial, data = pima) | |
# Alpha Level | |
alpha = 0.05 | |
# | |
# New Data having various values of Glucose and Diabetes | |
# | |
new_d <- with(pima, data.table(glucose = rep(quantile(pima$glucose)[2:4], each = 100), | |
diabetes = rep(seq(from = min(diabetes), | |
to = max(diabetes), | |
length.out = 100)), 3)) | |
# | |
# Prediction of Probabilities | |
# | |
prd_p <- new_d %>% | |
predict(m, newdata = ., type = 'link', se.fit = TRUE) %>% | |
as.data.table() %>% | |
mutate(predicted_prob = plogis(fit), | |
lower_limit = plogis(fit - qnorm(1 - alpha / 2) * se.fit), | |
upper_limit = plogis(fit + qnorm(1 - alpha / 2) * se.fit)) %>% | |
cbind(new_d, .) %>% | |
select(glucose, diabetes, predicted_prob, lower_limit, upper_limit) | |
# | |
# Visualization | |
# | |
prd_p$glucose <- factor(prd_p$glucose) | |
ribbon <- ggplot(prd_p, aes(x = diabetes, y = predicted_prob)) + | |
geom_ribbon(aes(ymin = lower_limit, ymax = upper_limit, fill = glucose), alpha = 0.2) + | |
geom_line(aes(colour = glucose), size = 1) + | |
labs(x = 'diabetes pedigree function', y = 'test of diabetes') | |
svg('plot.svg', width = 6, height = 4) | |
plot(ribbon) | |
dev.off() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment