Created
February 22, 2024 08:40
-
-
Save dcoeurjo/aa455ff855c2d774b2e814e325e48c2b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
> library(ggplot2) | |
> library(reshape2) | |
> library(glue) | |
> library(dplyr) | |
> library(ggpubr) | |
> #we create some empty data frames to hold all events, the summary of time data, and the error data | |
> fullTimeData <- read.table("logfiles/log/_globalTimeDummy.txt",header=TRUE,sep="\t",fill=TRUE,blank.lines.skip=TRUE,as.is=TRUE) | |
> summaryTimeData <- read.table("logfiles/log/_summaryTimeDummy.txt",header=TRUE,sep="\t",fill=TRUE,blank.lines.skip=TRUE,as.is=TRUE) | |
Warning message: | |
In read.table("logfiles/log/_summaryTimeDummy.txt", header = TRUE, : | |
incomplete final line found by readTableHeader on 'logfiles/log/_summaryTimeDummy.txt' | |
> | |
> fullErrorData <-read.table("logfiles/log/_globalErrorDummy.txt", | |
+ header=TRUE, | |
+ sep="\t", | |
+ fill=TRUE, | |
+ blank.lines.skip=TRUE, | |
+ as.is=TRUE | |
+ ) | |
Warning message: | |
In read.table("logfiles/log/_globalErrorDummy.txt", header = TRUE, : | |
incomplete final line found by readTableHeader on 'logfiles/log/_globalErrorDummy.txt' | |
> | |
> | |
> #now reading the logfiles | |
> files <- (Sys.glob("logfiles/log/*.csv")) | |
> print("Reading logfiles..." ) | |
[1] "Reading logfiles..." | |
> | |
> for (file in files){ | |
+ | |
+ data <- read.table(file,header=TRUE,sep=",",fill=TRUE,blank.lines.skip=TRUE,as.is=TRUE) | |
+ #we remove the last line that contains the error data | |
+ events <-tail(data, 2) | |
+ | |
+ #from the events we extract the time the trial took | |
+ endTime <- as.numeric(events[events$Lable=="End","Time"]) | |
+ | |
+ | |
+ #now because the last line has 10 entries and not 8 as the header suggests we have to read the last line again | |
+ s<-nrow(data) | |
+ lastline <- read.table(file,header=FALSE,sep=",",skip=s,col.names=c("V1","TruePositives","V2","TrueNegatives","V3","FalseNegatives","V4","FalsePositives")) | |
+ | |
+ #now generate some new data frames from the extracted data | |
+ participantId <- data[2,2] | |
+ techniqueId <- data[2,4] | |
+ datasetId <- data[2,3] | |
+ repetitionId <- data[2,5] | |
+ | |
+ #one for holding all the timing information | |
+ summaryTime <- data.frame(participantId,techniqueId,datasetId,repetitionId,c(endTime)) | |
+ colnames(summaryTime) <- c("ParticipantID","TechniqueID","DatasetID","RepetitionID","Time") | |
+ | |
+ #one for the error data | |
+ div <- 1000 #the division factor | |
+ fp <- lastline$FalsePositives / div | |
+ tp <- lastline$TruePositives / div | |
+ fn <- lastline$FalseNegatives / div | |
+ tn <- lastline$TrueNegatives / div | |
+ error <- data.frame(participantId,techniqueId,datasetId,repetitionId,tp,tn,fp,fn) | |
+ colnames(error) <- c("ParticipantID","TechniqueID","DatasetID","RepetitionID","TP","TN","FP","FN") | |
+ | |
+ | |
+ | |
+ #add the data from this logfile to the global tables | |
+ fullTimeData <- rbind(fullTimeData,events) | |
+ fullErrorData <- rbind(fullErrorData,error) | |
+ summaryTimeData <- rbind(summaryTimeData,summaryTime) | |
+ | |
+ } | |
> | |
> print("done reading logfiles. Now combining and preparing the data") | |
[1] "done reading logfiles. Now combining and preparing the data" | |
> | |
> #some data massaging here | |
> | |
> #1: add a column in seconds for plotting purposes | |
> summaryTimeData$TimeInS = summaryTimeData$Time | |
> | |
> #2: logtransform time before averaging | |
> summaryTimeData$LogTime=log(summaryTimeData$TimeInS) | |
> | |
> #3: make the ids a factor | |
> summaryTimeData$TechniqueID <- factor(summaryTimeData$TechniqueID) | |
> fullErrorData$TechniqueID <- factor(fullErrorData$TechniqueID) | |
> fullTimeData$TechniqueID <- factor(fullTimeData$TechniqueID) | |
> summaryTimeData$RepetitionID <- factor(summaryTimeData$RepetitionID) | |
> | |
> | |
> | |
> ################################################### | |
> | |
> | |
> createErrorStats <- function(errorDataSubset,filenamePrefix){ | |
+ | |
+ ############## Calculate error stats ######################## | |
+ errorDataSubset$Precision = errorDataSubset$TP / (errorDataSubset$TP + errorDataSubset$FP) | |
+ errorDataSubset$Recall = errorDataSubset$TP / (errorDataSubset$TP + errorDataSubset$FN) | |
+ errorDataSubset$F1 = 2 * (errorDataSubset$Precision * errorDataSubset$Recall) / (errorDataSubset$Precision + errorDataSubset$Recall) | |
+ errorDataSubset$MCC = ((errorDataSubset$TP * errorDataSubset$TN) - (errorDataSubset$FP * errorDataSubset$FN)) / | |
+ sqrt((errorDataSubset$TP + errorDataSubset$FP)*(errorDataSubset$TP + errorDataSubset$FN)*(errorDataSubset$TN+errorDataSubset$FP)*(errorDataSubset$TN+errorDataSubset$FN)) | |
+ | |
+ #replace NAs with 0s | |
+ e <- errorDataSubset | |
+ e[is.na(e <- errorDataSubset)] <- 0 | |
+ | |
+ errorMelt <- melt(e,id=c("ParticipantID","TechniqueID","DatasetID","RepetitionID"),measure.vars=c("F1","MCC")) | |
+ errorPerParticipant <- as.data.frame(acast(errorMelt,ParticipantID ~ TechniqueID ~ variable,mean)) | |
+ #Selection technique: 0 MeTaPoint, 1 MeTaBrush, 2 MeTaPaint, 3 BaseLine | |
+ colnames(errorPerParticipant) <- c("T0_F1","T1_F1","T2_F1","T3_F1","T0_MCC","T1_MCC","T2_MCC","T3_MCC") | |
+ | |
+ error_F1_mean0 <- bootstrapMeanCI(errorPerParticipant$T0_F1) | |
+ cat("The mean F1 error rate for technique 0 is ", formatCI(error_F1_mean0, ""), ", ", sep = "") | |
+ cat("\n") | |
+ error_F1_mean1 <- bootstrapMeanCI(errorPerParticipant$T1_F1) | |
+ cat("The mean F1 error rate for technique 1 is ", formatCI(error_F1_mean1, ""), ", ", sep = "") | |
+ cat("\n") | |
+ error_F1_mean2 <- bootstrapMeanCI(errorPerParticipant$T2_F1) | |
+ cat("The mean F1 error rate for technique 2 is ", formatCI(error_F1_mean2, ""), ", ", sep = "") | |
+ cat("\n") | |
+ error_F1_mean3 <- bootstrapMeanCI(errorPerParticipant$T3_F1) | |
+ cat("The mean F1 error rate for technique 3 is ", formatCI(error_F1_mean3, ""), ", ", sep = "") | |
+ cat("\n") | |
+ | |
+ | |
+ F1resultTable <- data.frame(error_F1_mean0,error_F1_mean1,error_F1_mean2,error_F1_mean3) | |
+ colnames(F1resultTable) <- c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine") | |
+ row.names(F1resultTable) <- c("mean_F1","lowerBound_CI","upperBound_CI") | |
+ | |
+ cat("F1 Table\n") | |
+ print(F1resultTable) | |
+ | |
+ write.table(F1resultTable, paste(filenamePrefix, "Means_F1.csv", sep=""), sep=",") | |
+ | |
+ error_MCC_mean0 <- bootstrapMeanCI(errorPerParticipant$T0_MCC) | |
+ cat("The mean MCC error rate for technique 0 is ", formatCI(error_MCC_mean0, ""), ", ", sep = "") | |
+ cat("\n") | |
+ error_MCC_mean1 <- bootstrapMeanCI(errorPerParticipant$T1_MCC) | |
+ cat("The mean MCC error rate for technique 1 is ", formatCI(error_MCC_mean1, ""), ", ", sep = "") | |
+ cat("\n") | |
+ error_MCC_mean2 <- bootstrapMeanCI(errorPerParticipant$T2_MCC) | |
+ cat("The mean MCC error rate for technique 2 is ", formatCI(error_MCC_mean2, ""), ", ", sep = "") | |
+ cat("\n") | |
+ error_MCC_mean3 <- bootstrapMeanCI(errorPerParticipant$T3_MCC) | |
+ cat("The mean MCC error rate for technique 3 is ", formatCI(error_MCC_mean3, ""), ", ", sep = "") | |
+ cat("\n") | |
+ | |
+ | |
+ MCCresultTable <- data.frame(error_MCC_mean0,error_MCC_mean1,error_MCC_mean2,error_MCC_mean3) | |
+ | |
+ colnames(MCCresultTable) <-c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine") | |
+ row.names(MCCresultTable) <- c("mean_MCC","lowerBound_CI","upperBound_CI") | |
+ | |
+ cat("-------------------------------------\n") | |
+ cat("MCC Table\n") | |
+ print(MCCresultTable) | |
+ | |
+ write.table(MCCresultTable, paste(filenamePrefix, "Means_MCC.csv", sep=""), sep=",") | |
+ | |
+ | |
+ pdf(file=paste(filenamePrefix, "F1Distribution.pdf", sep="")) | |
+ F1Distribution(errorDataSubset) | |
+ dev.off() | |
+ | |
+ pdf(file=paste(filenamePrefix, "MCCDistribution.pdf", sep="")) | |
+ MCCDistribution(errorDataSubset) | |
+ dev.off() | |
+ | |
+ pdf(file=paste(filenamePrefix, "barChartF1.pdf", sep=""), width=8, height=2) | |
+ barChartF1(F1resultTable) | |
+ dev.off() | |
+ | |
+ pdf(file=paste(filenamePrefix, "barChartMCC.pdf", sep=""), width=8, height=2) | |
+ barChartMCC(MCCresultTable) | |
+ dev.off() | |
+ | |
+ } | |
> | |
> ############## Calculate time stats ######################### | |
> | |
> createTimeStats <- function(summaryTimeDataSubset,filenamePrefix){ | |
+ | |
+ | |
+ timeMelt <- melt(summaryTimeDataSubset,id=c("ParticipantID","TechniqueID","DatasetID","RepetitionID"),measure.vars=c("LogTime")) | |
+ participantPerTechnique <- as.data.frame(acast(timeMelt,ParticipantID ~ TechniqueID ~ variable,mean)) | |
+ colnames(participantPerTechnique) <- c("T0","T1","T2","T3") | |
+ | |
+ #now on to the confidence intervals | |
+ mean0 <- exp(exactMeanCI(participantPerTechnique$T0)) | |
+ cat("The mean task completion time for technique 0 is ", formatCI(mean0, "s"), ". ", sep = "") | |
+ cat("\n") | |
+ mean1 <- exp(exactMeanCI(participantPerTechnique$T1)) | |
+ cat("The mean task completion time for technique 1 is ", formatCI(mean1, "s"), ". ", sep = "") | |
+ cat("\n") | |
+ mean2 <- exp(exactMeanCI(participantPerTechnique$T2)) | |
+ cat("The mean task completion time for technique 2 is ", formatCI(mean2, "s"), ". ", sep = "") | |
+ cat("\n") | |
+ mean3 <- exp(exactMeanCI(participantPerTechnique$T3)) | |
+ cat("The mean task completion time for technique 3 is ", formatCI(mean3, "s"), ". ", sep = "") | |
+ cat("\n") | |
+ | |
+ | |
+ resultTable <- data.frame(mean0,mean1,mean2,mean3) | |
+ colnames(resultTable) <- c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine") | |
+ row.names(resultTable) <- c("mean_time","lowerBound_CI","upperBound_CI") | |
+ | |
+ cat("Time Table\n") | |
+ print(resultTable) | |
+ | |
+ write.table(resultTable, paste(filenamePrefix, "Means_time.csv", sep=""), sep=",") | |
+ barChartTime(resultTable) | |
+ | |
+ | |
+ pdf(file=paste(filenamePrefix, "boxplotTime.pdf", sep="")) | |
+ boxplotTime(summaryTimeDataSubset) | |
+ dev.off() | |
+ | |
+ pdf(file=paste(filenamePrefix, "logTimeDistribution.pdf", sep="")) | |
+ logTimeDistribution(summaryTimeDataSubset) | |
+ dev.off() | |
+ | |
+ pdf(file=paste(filenamePrefix, "boxplotTimePerDataset.pdf", sep="")) | |
+ boxplotTimePerDataset(summaryTimeDataSubset) | |
+ dev.off() | |
+ | |
+ | |
+ pdf(file=paste(filenamePrefix, "barChartTime.pdf", sep=""), width=8, height=2) | |
+ barChartTime(resultTable) | |
+ dev.off() | |
+ | |
+ cat("Calculating differences\n") | |
+ #now plot the differences: | |
+ | |
+ v1 <- participantPerTechnique$T0 - participantPerTechnique$T2 | |
+ v2 <- participantPerTechnique$T1 - participantPerTechnique$T0 | |
+ v3 <- participantPerTechnique$T1 - participantPerTechnique$T2 | |
+ v100 <- participantPerTechnique$T3 - participantPerTechnique$T1 | |
+ | |
+ mean8 <- exp(exactMeanCI(v1)) | |
+ mean9 <- exp(exactMeanCI(v2)) | |
+ mean10 <- exp(exactMeanCI(v3)) | |
+ mean100 <- exp(exactMeanCI(v100)) | |
+ | |
+ resultTableDifferences <- data.frame(mean8,mean9,mean10,mean100) | |
+ colnames(resultTableDifferences) <- c("MeTaPoint/MeTaPaint","MeTaBrush/MeTaPoint","MeTaBrush/MeTaPaint","Baseline/MeTaBrush") | |
+ row.names(resultTableDifferences) <- c("mean_time","lowerBound_CI","upperBound_CI") | |
+ | |
+ | |
+ | |
+ cat("Time Table Differences\n") | |
+ print(resultTableDifferences) | |
+ | |
+ pdf(file=paste(filenamePrefix, "barChartTimeDatasetsDifference.pdf", sep=""), width=8, height=2) | |
+ barChartTimeDifference(resultTableDifferences) | |
+ dev.off() | |
+ | |
+ write.table(resultTableDifferences, paste(filenamePrefix, "Ratios_time.csv", sep=""), sep=",") | |
+ | |
+ | |
+ # ("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine") | |
+ v1 <- participantPerTechnique$T0 - participantPerTechnique$T1 #MeTaPoint - MeTaBrush | |
+ v2 <- participantPerTechnique$T0 - participantPerTechnique$T2 #MeTaPoint - MeTaPaint | |
+ v3 <- participantPerTechnique$T0 - participantPerTechnique$T3 #MeTaPoint - BaseLine | |
+ v4 <- participantPerTechnique$T1 - participantPerTechnique$T2 #MeTaBrush - MeTaPaint | |
+ v5 <- participantPerTechnique$T1 - participantPerTechnique$T3 #MeTaBrush - BaseLine | |
+ v6 <- participantPerTechnique$T2 - participantPerTechnique$T3 #MeTaPaint - BaseLine | |
+ | |
+ mean11 <- exp(exactMeanCI(v1)) | |
+ mean12 <- exp(exactMeanCI(v2)) | |
+ mean13 <- exp(exactMeanCI(v3)) | |
+ mean14 <- exp(exactMeanCI(v4)) | |
+ mean15 <- exp(exactMeanCI(v5)) | |
+ mean16 <- exp(exactMeanCI(v6)) | |
+ | |
+ resultTableDifferences <- data.frame(mean11,mean12,mean13,mean14,mean15,mean16) | |
+ colnames(resultTableDifferences) <- c("MeTaPoint/MeTaBrush","MeTaPoint/MeTaPaint","MeTaPoint/BaseLine","MeTaBrush/MeTaPaint","MeTaBrush/BaseLine","MeTaPaint/BaseLine") | |
+ row.names(resultTableDifferences) <- c("mean_time","lowerBound_CI","upperBound_CI") | |
+ | |
+ pdf(file=paste(filenamePrefix, "barChartTimeDatasetsDifference2.pdf", sep=""), width=8, height=3) | |
+ barChartTimeDifference2(resultTableDifferences) | |
+ dev.off() | |
+ | |
+ write.table(resultTableDifferences, paste(filenamePrefix, "Ratios_time2.csv", sep=""), sep=",") | |
+ | |
+ } | |
> | |
> | |
> | |
> ##############PLOTTING CODE BELOW | |
> | |
> | |
> | |
> require(grid) | |
> | |
> barChartMCC <- function(MCCresultTable){ | |
+ tr <- t(MCCresultTable) | |
+ tr <- as.data.frame(tr) | |
+ | |
+ | |
+ #now need to calculate one number for the width of the interval | |
+ tr$CI2 <- tr$upperBound_CI - tr$mean_MCC | |
+ tr$CI1 <- tr$mean_MCC - tr$lowerBound_CI | |
+ | |
+ #add a technique column | |
+ tr$technique <- factor(c(0,1,2,3)) | |
+ | |
+ | |
+ | |
+ g <- ggplot(tr, aes(x=technique, y=mean_MCC)) + | |
+ geom_bar(stat="identity",fill = I("#CCCCCC")) + | |
+ geom_errorbar(aes(ymin=mean_MCC-CI1, ymax=mean_MCC+CI2), | |
+ width=0, # Width of the error bars | |
+ size = 1.1 | |
+ ) + | |
+ | |
+ labs(x = "", y = "MCC score") + | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) + | |
+ coord_flip() + | |
+ theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+ | |
+ geom_point(size=4, colour="black") # dots | |
+ | |
+ print(g) | |
+ } | |
> | |
> barChartF1 <- function(F1resultTable){ | |
+ tr <- t(F1resultTable) | |
+ tr <- as.data.frame(tr) | |
+ | |
+ | |
+ #now need to calculate one number for the width of the interval | |
+ tr$CI2 <- tr$upperBound_CI - tr$mean_F1 | |
+ tr$CI1 <- tr$mean_F1 - tr$lowerBound_CI | |
+ | |
+ #add a technique column | |
+ tr$technique <- factor(c(0,1,2,3)) | |
+ | |
+ | |
+ g <- ggplot(tr, aes(x=technique, y=mean_F1)) + | |
+ geom_bar(stat="identity",fill = I("#CCCCCC")) + | |
+ geom_errorbar(aes(ymin=mean_F1-CI1, ymax=mean_F1+CI2), | |
+ width=0, # Width of the error bars | |
+ size = 1.1 | |
+ ) + | |
+ | |
+ labs(x = "", y = "F1 score") + | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) + | |
+ coord_flip() + | |
+ theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+ | |
+ geom_point(size=4, colour="black") # dots | |
+ | |
+ print(g) | |
+ } | |
> | |
> | |
> barChartTimeDifference <- function(resultTable){ | |
+ print("Creating difference time table") | |
+ tr <- t(resultTable) | |
+ tr <- as.data.frame(tr) | |
+ | |
+ | |
+ #now need to calculate one number for the width of the interval | |
+ tr$CI2 <- tr$upperBound_CI - tr$mean_time | |
+ tr$CI1 <- tr$mean_time - tr$lowerBound_CI | |
+ | |
+ #add a technique column | |
+ tr$technique <- factor(c(0,1,2,3)) | |
+ | |
+ | |
+ g <- ggplot(tr, aes(x=technique, y=mean_time)) + | |
+ #geom_bar(stat="identity",fill = I("#CCCCCC")) + | |
+ geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2), | |
+ width=0, # Width of the error bars | |
+ size = 1.1 | |
+ ) + | |
+ | |
+ labs(x = "", y = "Ratio between completion times",title="no effect") + | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint/MeTaPaint","MeTaPoint/MeTaBrush","MeTaPaint/MeTaBrush","MeTaBrush/Baseline")) + | |
+ scale_y_continuous(limits = c(0.5,3)) + | |
+ coord_flip() + | |
+ theme(plot.title=element_text(hjust=.245),panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+ | |
+ geom_point(size=4, colour="black") + # dots | |
+ geom_hline(yintercept = 1) | |
+ | |
+ print(g) | |
+ } | |
> | |
> barChartTimeDifference2 <- function(resultTable){ | |
+ print("Creating difference time table") | |
+ tr <- t(resultTable) | |
+ tr <- as.data.frame(tr) | |
+ | |
+ | |
+ #now need to calculate one number for the width of the interval | |
+ tr$CI2 <- tr$upperBound_CI - tr$mean_time | |
+ tr$CI1 <- tr$mean_time - tr$lowerBound_CI | |
+ | |
+ #add a technique column | |
+ tr$technique <- factor(c(0,1,2,3,4,5)) | |
+ | |
+ | |
+ g <- ggplot(tr, aes(x=technique, y=mean_time)) + | |
+ #geom_bar(stat="identity",fill = I("#CCCCCC")) + | |
+ geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2), | |
+ width=0, # Width of the error bars | |
+ size = 1.1 | |
+ ) + | |
+ | |
+ labs(x = "", y = "Ratio between completion times",title="no effect") + | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3","4","5"),labels=c("MeTaPoint/MeTaBrush","MeTaPoint/MeTaPaint","MeTaPoint/BaseLine","MeTaBrush/MeTaPaint","MeTaBrush/BaseLine","MeTaPaint/BaseLine")) + | |
+ scale_y_continuous(limits = c(1,10)) + | |
+ coord_flip() + | |
+ theme(plot.title=element_text(hjust=.5),panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+ | |
+ geom_point(size=4, colour="black") + # dots | |
+ geom_hline(yintercept = 1) | |
+ | |
+ print(g) | |
+ } | |
> barChartTime <- function(resultTable){ | |
+ tr <- t(resultTable) | |
+ tr <- as.data.frame(tr) | |
+ | |
+ | |
+ #now need to calculate one number for the width of the interval | |
+ tr$CI2 <- tr$upperBound_CI - tr$mean_time | |
+ tr$CI1 <- tr$mean_time - tr$lowerBound_CI | |
+ | |
+ #add a technique column | |
+ tr$technique <- factor(c(0,1,2,3)) | |
+ | |
+ | |
+ g <- ggplot(tr, aes(x=technique, y=mean_time)) + | |
+ geom_bar(stat="identity",fill = I("#CCCCCC")) + | |
+ geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2), | |
+ width=0, # Width of the error bars | |
+ size = 1.1 | |
+ ) + | |
+ | |
+ labs(x = "", y = "Completion time (in seconds)") + | |
+ scale_y_continuous(limits = c(0,60)) + | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) + | |
+ coord_flip() + | |
+ theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+ | |
+ geom_point(size=4, colour="black") # dots | |
+ | |
+ print(g) | |
+ } | |
> | |
> barChartTimeDatasets <- function(resultTable){ | |
+ tr <- t(resultTable) | |
+ tr <- as.data.frame(tr) | |
+ | |
+ | |
+ #now need to calculate one number for the width of the interval | |
+ tr$CI2 <- tr$upperBound_CI - tr$mean_time | |
+ tr$CI1 <- tr$mean_time - tr$lowerBound_CI | |
+ | |
+ #add a technique column | |
+ tr$technique <- factor(c(4,5,6,7)) | |
+ | |
+ | |
+ g <- ggplot(tr, aes(x=technique, y=mean_time)) + | |
+ geom_bar(stat="identity",fill = I("#CCCCCC")) + | |
+ geom_errorbar(aes(ymin=mean_time-CI1, ymax=mean_time+CI2), | |
+ width=0, # Width of the error bars | |
+ size = 1.1 | |
+ ) + | |
+ | |
+ labs(x = "", y = "Completion time (in seconds)") + | |
+ scale_x_discrete(name="",breaks=c("4","5","6","7"),labels=c("Clusters","Shell","Rings","Simulation")) + | |
+ coord_flip() + | |
+ theme(panel.background = element_rect(fill = 'white', colour = 'white'),axis.title=element_text(size = rel(1.2), colour = "black"),axis.text=element_text(size = rel(1.2), colour = "black"),panel.grid.major = element_line(colour = "#DDDDDD"),panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank())+ | |
+ geom_point(size=4, colour="black") # dots | |
+ | |
+ print(g) | |
+ } | |
> | |
> | |
> | |
> boxplotTime <- function(summaryTimeDataSubset){ | |
+ | |
+ g <- ggplot(summaryTimeDataSubset,aes(x=as.factor(TechniqueID),y=TimeInS,fill=as.factor(TechniqueID)))+ | |
+ geom_boxplot() + | |
+ # labs(title="Overall time per technique") + | |
+ labs(x = "Technique", y = "Time in s") + | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) | |
+ print(g) | |
+ } | |
> | |
> boxplotTimePerDataset <- function(summaryTimeDataSubset){ | |
+ g <- ggplot(summaryTimeDataSubset,aes(x=as.factor(TechniqueID),y=TimeInS,fill=as.factor(TechniqueID)))+ | |
+ geom_boxplot() + | |
+ # labs(title="Overall time per technique") + | |
+ labs(x = "Technique", y = "Time in s") + | |
+ scale_fill_discrete(name="Technique",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine"))+ | |
+ scale_x_discrete(name="",breaks=c("0","1","2","3"),labels=c("MeTaPoint","MeTaBrush","MeTaPaint","BaseLine")) + | |
+ facet_grid(DatasetID~.) | |
+ | |
+ print(g) | |
+ } | |
> | |
> | |
> logTimeDistribution <- function(summaryTimeDataSubset){ | |
+ g <- qplot(LogTime,data=summaryTimeDataSubset,facets=.~TechniqueID) | |
+ print(g) | |
+ } | |
> | |
> F1Distribution <- function(errorDataSubset){ | |
+ g <- qplot(F1,data=errorDataSubset,facets=.~TechniqueID) | |
+ print(g) | |
+ } | |
> | |
> MCCDistribution <- function(errorDataSubset){ | |
+ g <- qplot(MCC,data=errorDataSubset,facets=.~TechniqueID) | |
+ print(g) | |
+ } | |
> | |
> | |
> ##############take just a subset of repetitions | |
> #full data for 0123dataset, repetitions 2 and 3 | |
> | |
> cat("****************************************************\n") | |
**************************************************** | |
> cat("Preparing time data for 0123 datasets\n") | |
Preparing time data for 0123 datasets | |
> summaryTimeDataSubset <- summaryTimeData[ which(as.numeric(summaryTimeData$RepetitionID) > 0 &as.numeric(summaryTimeData$DatasetID)!=4), ] | |
> createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_0123Datasets_rep23") | |
The mean task completion time for technique 0 is 16s, 95% CI [14, 19]. | |
The mean task completion time for technique 1 is 36s, 95% CI [32, 41]. | |
The mean task completion time for technique 2 is 15s, 95% CI [13, 17]. | |
The mean task completion time for technique 3 is 45s, 95% CI [37, 54]. | |
Time Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_time 16.47652 36.27165 14.76685 44.84460 | |
lowerBound_CI 14.20704 31.78323 12.57151 37.16813 | |
upperBound_CI 19.10854 41.39393 17.34555 54.10652 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
Calculating differences | |
Time Table Differences | |
MeTaPoint/MeTaPaint MeTaBrush/MeTaPoint MeTaBrush/MeTaPaint Baseline/MeTaBrush | |
mean_time 1.115778 2.201415 2.456289 1.236354 | |
lowerBound_CI 0.948664 1.985654 2.131199 1.060207 | |
upperBound_CI 1.312329 2.440620 2.830968 1.441767 | |
[1] "Creating difference time table" | |
[1] "Creating difference time table" | |
Warning message: | |
Removed 4 rows containing missing values (`geom_point()`). | |
> cat("Preparing error data for 0123 datasets\n") | |
Preparing error data for 0123 datasets | |
> errorDataSubset <- fullErrorData[ which(as.numeric(fullErrorData$RepetitionID) > 0&as.numeric(summaryTimeData$DatasetID)!=4), ] | |
> createErrorStats(errorDataSubset,"resultFiles/log/error_0123Datasets_rep23_") | |
The mean F1 error rate for technique 0 is 0.97, 95% CI [0.97, 0.98], | |
The mean F1 error rate for technique 1 is 0.97, 95% CI [0.96, 0.97], | |
The mean F1 error rate for technique 2 is 0.98, 95% CI [0.97, 0.98], | |
The mean F1 error rate for technique 3 is 0.93, 95% CI [0.87, 0.95], | |
F1 Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_F1 0.9746273 0.9677603 0.9777824 0.9332369 | |
lowerBound_CI 0.9662269 0.9603070 0.9682937 0.8731106 | |
upperBound_CI 0.9802500 0.9731983 0.9835586 0.9533580 | |
The mean MCC error rate for technique 0 is 0.96, 95% CI [0.94, 0.97], | |
The mean MCC error rate for technique 1 is 0.94, 95% CI [0.93, 0.95], | |
The mean MCC error rate for technique 2 is 0.96, 95% CI [0.95, 0.97], | |
The mean MCC error rate for technique 3 is 0.9, 95% CI [0.84, 0.92], | |
------------------------------------- | |
MCC Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_MCC 0.9563775 0.9447154 0.9648347 0.8975993 | |
lowerBound_CI 0.9412768 0.9318410 0.9520117 0.8395053 | |
upperBound_CI 0.9661155 0.9536499 0.9733197 0.9212028 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
RStudioGD | |
2 | |
> | |
> cat("****************************************************\n") | |
**************************************************** | |
> #dataset0 only, rep 2 and 3 | |
> cat("Preparing time data for dataset 0\n") | |
Preparing time data for dataset 0 | |
> summaryTimeDataSubset = subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "0") | |
> createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset0_rep23") | |
The mean task completion time for technique 0 is 11s, 95% CI [9.6, 13]. | |
The mean task completion time for technique 1 is 43s, 95% CI [36, 50]. | |
The mean task completion time for technique 2 is 10s, 95% CI [8.9, 12]. | |
The mean task completion time for technique 3 is 38s, 95% CI [30, 47]. | |
Time Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_time 11.234040 42.51230 10.319820 37.73508 | |
lowerBound_CI 9.607241 35.93389 8.942534 30.36139 | |
upperBound_CI 13.136306 50.29501 11.909229 46.89956 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
Calculating differences | |
Time Table Differences | |
MeTaPoint/MeTaPaint MeTaBrush/MeTaPoint MeTaBrush/MeTaPaint Baseline/MeTaBrush | |
mean_time 1.0885887 3.784239 4.119480 0.8876273 | |
lowerBound_CI 0.9189657 3.273564 3.402231 0.7156512 | |
upperBound_CI 1.2895209 4.374580 4.987939 1.1009305 | |
[1] "Creating difference time table" | |
[1] "Creating difference time table" | |
Warning messages: | |
1: Removed 2 rows containing missing values (`geom_point()`). | |
2: Removed 3 rows containing missing values (`geom_point()`). | |
> | |
> cat("Preparing error data for dataset 0\n") | |
Preparing error data for dataset 0 | |
> errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) >0 & DatasetID == "0") | |
> createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset0_rep23_") | |
The mean F1 error rate for technique 0 is 0.96, 95% CI [0.94, 0.97], | |
The mean F1 error rate for technique 1 is 0.93, 95% CI [0.9, 0.94], | |
The mean F1 error rate for technique 2 is 0.97, 95% CI [0.93, 0.98], | |
The mean F1 error rate for technique 3 is 0.88, 95% CI [0.84, 0.89], | |
F1 Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_F1 0.9590493 0.9270611 0.9660168 0.8800038 | |
lowerBound_CI 0.9418043 0.9027299 0.9349776 0.8407339 | |
upperBound_CI 0.9696680 0.9439996 0.9765545 0.8938426 | |
The mean MCC error rate for technique 0 is 0.94, 95% CI [0.91, 0.95], | |
The mean MCC error rate for technique 1 is 0.89, 95% CI [0.85, 0.92], | |
The mean MCC error rate for technique 2 is 0.95, 95% CI [0.92, 0.97], | |
The mean MCC error rate for technique 3 is 0.82, 95% CI [0.78, 0.84], | |
------------------------------------- | |
MCC Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_MCC 0.9389912 0.8890753 0.9530727 0.8229392 | |
lowerBound_CI 0.9137707 0.8516795 0.9229414 0.7808991 | |
upperBound_CI 0.9545730 0.9150251 0.9655429 0.8390761 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
RStudioGD | |
2 | |
> | |
> cat("****************************************************\n") | |
**************************************************** | |
> #dataset1 only, rep 2 and 3 | |
> cat("Preparing time data for dataset 1\n") | |
Preparing time data for dataset 1 | |
> summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "1") | |
> createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset1_rep23") | |
The mean task completion time for technique 0 is 38s, 95% CI [33, 45]. | |
The mean task completion time for technique 1 is 17s, 95% CI [14, 21]. | |
The mean task completion time for technique 2 is 40s, 95% CI [32, 51]. | |
The mean task completion time for technique 3 is 27s, 95% CI [22, 34]. | |
Time Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_time 38.42534 17.48602 40.30461 27.07517 | |
lowerBound_CI 32.50994 14.27802 32.12587 21.60071 | |
upperBound_CI 45.41709 21.41481 50.56551 33.93706 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
Calculating differences | |
Time Table Differences | |
MeTaPoint/MeTaPaint MeTaBrush/MeTaPoint MeTaBrush/MeTaPaint Baseline/MeTaBrush | |
mean_time 0.9533734 0.4550649 0.4338468 1.548389 | |
lowerBound_CI 0.7630997 0.3766999 0.3499448 1.250651 | |
upperBound_CI 1.1910906 0.5497321 0.5378649 1.917009 | |
[1] "Creating difference time table" | |
[1] "Creating difference time table" | |
Warning messages: | |
1: Removed 2 rows containing missing values (`geom_point()`). | |
2: Removed 3 rows containing missing values (`geom_point()`). | |
> cat("Preparing error data for dataset 1\n") | |
Preparing error data for dataset 1 | |
> errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "1") | |
> createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset1_rep23_") | |
The mean F1 error rate for technique 0 is 0.97, 95% CI [0.96, 0.98], | |
The mean F1 error rate for technique 1 is 0.98, 95% CI [0.96, 0.98], | |
The mean F1 error rate for technique 2 is 0.96, 95% CI [0.94, 0.97], | |
The mean F1 error rate for technique 3 is 0.96, 95% CI [0.93, 0.98], | |
F1 Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_F1 0.9707562 0.9775593 0.9628212 0.9621260 | |
lowerBound_CI 0.9620775 0.9620477 0.9419986 0.9327366 | |
upperBound_CI 0.9773438 0.9823700 0.9733258 0.9752487 | |
The mean MCC error rate for technique 0 is 0.96, 95% CI [0.94, 0.97], | |
The mean MCC error rate for technique 1 is 0.97, 95% CI [0.95, 0.97], | |
The mean MCC error rate for technique 2 is 0.95, 95% CI [0.92, 0.96], | |
The mean MCC error rate for technique 3 is 0.95, 95% CI [0.91, 0.96], | |
------------------------------------- | |
MCC Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_MCC 0.9561037 0.9667628 0.9473610 0.9469257 | |
lowerBound_CI 0.9435234 0.9492606 0.9235591 0.9123719 | |
upperBound_CI 0.9657208 0.9729559 0.9609445 0.9627480 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
RStudioGD | |
2 | |
> | |
> cat("****************************************************\n") | |
**************************************************** | |
> #dataset2 only rep 2 and 3 | |
> cat("Preparing time data for dataset 2\n") | |
Preparing time data for dataset 2 | |
> summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "2") | |
> createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset2_rep23") | |
The mean task completion time for technique 0 is 12s, 95% CI [9.6, 15]. | |
The mean task completion time for technique 1 is 58s, 95% CI [50, 68]. | |
The mean task completion time for technique 2 is 8.8s, 95% CI [6.8, 11]. | |
The mean task completion time for technique 3 is 62s, 95% CI [51, 76]. | |
Time Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_time 11.921083 58.10646 8.819390 62.42886 | |
lowerBound_CI 9.596287 49.95824 6.830928 51.01266 | |
upperBound_CI 14.809082 67.58366 11.386688 76.39990 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
Calculating differences | |
Time Table Differences | |
MeTaPoint/MeTaPaint MeTaBrush/MeTaPoint MeTaBrush/MeTaPaint Baseline/MeTaBrush | |
mean_time 1.351690 4.874260 6.588489 1.0743876 | |
lowerBound_CI 1.027441 3.976319 5.166861 0.8856797 | |
upperBound_CI 1.778269 5.974976 8.401269 1.3033026 | |
[1] "Creating difference time table" | |
[1] "Creating difference time table" | |
Warning messages: | |
1: Removed 1 rows containing missing values (`position_stack()`). | |
2: Removed 1 rows containing missing values (`geom_point()`). | |
3: Removed 1 rows containing missing values (`position_stack()`). | |
4: Removed 1 rows containing missing values (`geom_point()`). | |
5: Removed 2 rows containing missing values (`geom_point()`). | |
6: Removed 4 rows containing missing values (`geom_point()`). | |
> cat("Preparing error data for dataset 2\n") | |
Preparing error data for dataset 2 | |
> errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "2") | |
> createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset2_rep23_") | |
The mean F1 error rate for technique 0 is 0.98, 95% CI [0.96, 0.99], | |
The mean F1 error rate for technique 1 is 0.98, 95% CI [0.97, 0.98], | |
The mean F1 error rate for technique 2 is 0.99, 95% CI [0.98, 1], | |
The mean F1 error rate for technique 3 is 0.93, 95% CI [0.83, 0.96], | |
F1 Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_F1 0.9777804 0.9753291 0.9924353 0.9267291 | |
lowerBound_CI 0.9648629 0.9670917 0.9790958 0.8279360 | |
upperBound_CI 0.9862533 0.9797882 0.9970057 0.9602651 | |
The mean MCC error rate for technique 0 is 0.95, 95% CI [0.93, 0.97], | |
The mean MCC error rate for technique 1 is 0.95, 95% CI [0.93, 0.96], | |
The mean MCC error rate for technique 2 is 0.99, 95% CI [0.96, 0.99], | |
The mean MCC error rate for technique 3 is 0.88, 95% CI [0.8, 0.92], | |
------------------------------------- | |
MCC Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_MCC 0.9549114 0.9463741 0.9850742 0.8839042 | |
lowerBound_CI 0.9288535 0.9296403 0.9623657 0.7965292 | |
upperBound_CI 0.9716384 0.9552447 0.9936823 0.9201530 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
RStudioGD | |
2 | |
> | |
> cat("****************************************************\n") | |
**************************************************** | |
> #dataset3 only rep 2 and 3 | |
> cat("Preparing time data for dataset 3\n") | |
Preparing time data for dataset 3 | |
> summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "3") | |
> createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset3_rep23") | |
The mean task completion time for technique 0 is 14s, 95% CI [12, 17]. | |
The mean task completion time for technique 1 is 40s, 95% CI [35, 46]. | |
The mean task completion time for technique 2 is 13s, 95% CI [10, 16]. | |
The mean task completion time for technique 3 is 63s, 95% CI [52, 78]. | |
Time Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_time 14.32164 40.07185 12.96242 63.40725 | |
lowerBound_CI 11.83146 34.86478 10.41062 51.55290 | |
upperBound_CI 17.33592 46.05659 16.13971 77.98744 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
Calculating differences | |
Time Table Differences | |
MeTaPoint/MeTaPaint MeTaBrush/MeTaPoint MeTaBrush/MeTaPaint Baseline/MeTaBrush | |
mean_time 1.104858 2.797993 3.091386 1.582339 | |
lowerBound_CI 0.863637 2.371570 2.442836 1.321666 | |
upperBound_CI 1.413455 3.301091 3.912120 1.894425 | |
[1] "Creating difference time table" | |
[1] "Creating difference time table" | |
Warning messages: | |
1: Removed 1 rows containing missing values (`position_stack()`). | |
2: Removed 1 rows containing missing values (`geom_point()`). | |
3: Removed 1 rows containing missing values (`position_stack()`). | |
4: Removed 1 rows containing missing values (`geom_point()`). | |
5: Removed 1 rows containing missing values (`geom_point()`). | |
6: Removed 4 rows containing missing values (`geom_point()`). | |
> cat("Preparing error data for dataset 3\n") | |
Preparing error data for dataset 3 | |
> errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "3") | |
> createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset3_rep23_") | |
The mean F1 error rate for technique 0 is 0.99, 95% CI [0.99, 0.99], | |
The mean F1 error rate for technique 1 is 0.99, 95% CI [0.98, 0.99], | |
The mean F1 error rate for technique 2 is 0.99, 95% CI [0.98, 0.99], | |
The mean F1 error rate for technique 3 is 0.96, 95% CI [0.88, 0.99], | |
F1 Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_F1 0.9909232 0.9910919 0.9898562 0.9640887 | |
lowerBound_CI 0.9851747 0.9834049 0.9796517 0.8816865 | |
upperBound_CI 0.9943344 0.9949417 0.9941096 0.9858528 | |
The mean MCC error rate for technique 0 is 0.98, 95% CI [0.96, 0.98], | |
The mean MCC error rate for technique 1 is 0.98, 95% CI [0.96, 0.99], | |
The mean MCC error rate for technique 2 is 0.97, 95% CI [0.95, 0.98], | |
The mean MCC error rate for technique 3 is 0.94, 95% CI [0.86, 0.97], | |
------------------------------------- | |
MCC Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_MCC 0.9755036 0.9766492 0.9738307 0.9366281 | |
lowerBound_CI 0.9605727 0.9590015 0.9529581 0.8606405 | |
upperBound_CI 0.9845124 0.9861798 0.9843749 0.9656255 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
RStudioGD | |
2 | |
> | |
> cat("****************************************************\n") | |
**************************************************** | |
> #dataset4 only rep 2 and 3 | |
> cat("Preparing time data for dataset 4\n") | |
Preparing time data for dataset 4 | |
> summaryTimeDataSubset <- subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "4") | |
> createTimeStats(summaryTimeDataSubset,"resultFiles/log/time_Dataset4_rep23") | |
The mean task completion time for technique 0 is 44s, 95% CI [35, 54]. | |
The mean task completion time for technique 1 is 33s, 95% CI [29, 39]. | |
The mean task completion time for technique 2 is 39s, 95% CI [33, 47]. | |
The mean task completion time for technique 3 is 30s, 95% CI [24, 37]. | |
Time Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_time 43.61194 33.17069 39.46743 29.65762 | |
lowerBound_CI 35.14155 28.52374 32.99601 23.99341 | |
upperBound_CI 54.12400 38.57469 47.20807 36.65901 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
Calculating differences | |
Time Table Differences | |
MeTaPoint/MeTaPaint MeTaBrush/MeTaPoint MeTaBrush/MeTaPaint Baseline/MeTaBrush | |
mean_time 1.1050109 0.7605874 0.8404573 0.8940912 | |
lowerBound_CI 0.8705881 0.6071222 0.7030542 0.6914476 | |
upperBound_CI 1.4025566 0.9528446 1.0047142 1.1561239 | |
[1] "Creating difference time table" | |
[1] "Creating difference time table" | |
Warning message: | |
Removed 1 rows containing missing values (`geom_point()`). | |
> cat("Preparing error data for dataset 4\n") | |
Preparing error data for dataset 4 | |
> errorDataSubset <- subset(fullErrorData, as.numeric(fullErrorData$RepetitionID) > 0 & DatasetID == "4") | |
> createErrorStats(errorDataSubset,"resultFiles/log/error_Dataset4_rep23_") | |
The mean F1 error rate for technique 0 is 0.69, 95% CI [0.66, 0.72], | |
The mean F1 error rate for technique 1 is 0.88, 95% CI [0.86, 0.9], | |
The mean F1 error rate for technique 2 is 0.66, 95% CI [0.59, 0.7], | |
The mean F1 error rate for technique 3 is 0.69, 95% CI [0.64, 0.72], | |
F1 Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_F1 0.6927067 0.8795200 0.6626327 0.6929146 | |
lowerBound_CI 0.6585458 0.8563541 0.5935287 0.6424356 | |
upperBound_CI 0.7238649 0.9008686 0.6993268 0.7238361 | |
The mean MCC error rate for technique 0 is 0.69, 95% CI [0.66, 0.72], | |
The mean MCC error rate for technique 1 is 0.88, 95% CI [0.86, 0.9], | |
The mean MCC error rate for technique 2 is 0.67, 95% CI [0.6, 0.7], | |
The mean MCC error rate for technique 3 is 0.7, 95% CI [0.66, 0.73], | |
------------------------------------- | |
MCC Table | |
MeTaPoint MeTaBrush MeTaPaint BaseLine | |
mean_MCC 0.6917300 0.8817258 0.6684004 0.7048650 | |
lowerBound_CI 0.6592496 0.8598267 0.6035547 0.6638349 | |
upperBound_CI 0.7228861 0.9024512 0.7037986 0.7314277 | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. | |
RStudioGD | |
2 | |
Warning message: | |
Removed 1 rows containing non-finite values (`stat_bin()`). | |
> | |
> # a = subset(summaryTimeData, as.numeric(RepetitionID) > 0 & DatasetID == "0" & TechniqueID=="0") | |
> # ggdensity(a$Time, | |
> # main = "Density plot of sepal length", | |
> # xlab = "Time") | |
> # | |
> # ggqqplot(a$Time) | |
> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment