Created
March 19, 2024 06:01
-
-
Save dcolinmorgan/bd9a944a0a18385a9552279c6140f327 to your computer and use it in GitHub Desktop.
psuedocode for message passing algorithm utilizing spatial, ssRNA-seq and ChIP data, via pytorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class GraphConvolution(nn.Module): | |
def __init__(self, in_features, out_features): | |
super(GraphConvolution, self).__init__() | |
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features)) | |
self.bias = nn.Parameter(torch.FloatTensor(out_features)) | |
def forward(self, x, adj): | |
support = torch.matmul(x, self.weight) | |
output = torch.matmul(adj, support) + self.bias | |
return output | |
class MessagePassingNetwork(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(MessagePassingNetwork, self).__init__() | |
self.gc_chip = GraphConvolution(input_dim, hidden_dim) | |
self.gc_rna = GraphConvolution(input_dim, hidden_dim) | |
self.gc_spatial = GraphConvolution(input_dim, hidden_dim) | |
self.fc = nn.Linear(hidden_dim * 3, output_dim) | |
def forward(self, chip_data, rna_data, spatial_data, adj): | |
x_chip = F.relu(self.gc_chip(chip_data, adj)) | |
x_rna = F.relu(self.gc_rna(rna_data, adj)) | |
x_spatial = F.relu(self.gc_spatial(spatial_data, adj)) | |
# Combine features from different data types | |
x_combined = torch.cat((x_chip.unsqueeze(1), x_rna.unsqueeze(1), x_spatial.unsqueeze(1)), dim=1) | |
x_combined = torch.mean(x_combined, dim=1) # Average pooling | |
# Fully connected layer for final prediction | |
output = self.fc(x_combined) | |
return output | |
# Define input data (ChIP-seq, ssRNAseq, and spatial data) | |
chip_seq_data = ... # Shape: (num_nodes, num_features) | |
ssRNAseq_data = ... # Shape: (num_nodes, num_features) | |
spatial_data = ... # Shape: (num_nodes, num_features) | |
# Define adjacency matrix (assuming a pre-defined graph structure) | |
adjacency_matrix = ... # Shape: (num_nodes, num_nodes) | |
# Instantiate and forward pass through the message-passing network | |
input_dim = chip_seq_data.shape[1] # Assuming all data types have the same input dimension | |
hidden_dim = 64 | |
output_dim = 32 | |
mpn = MessagePassingNetwork(input_dim, hidden_dim, output_dim) | |
output = mpn(chip_seq_data, ssRNAseq_data, spatial_data, adjacency_matrix) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment