Last active
January 12, 2024 20:11
-
-
Save dctanner/03e00842cc68a23262d21c4b92ee775d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import json | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, pipeline | |
device = "cuda:0" | |
system_prompt = "You are Sablo, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge. You assist users with any question, task, or other request they may have." | |
model_path = sys.argv[1] | |
model_name = model_path.split("/")[-1] | |
tokenizer = AutoTokenizer.from_pretrained(model_path) #, local_files_only=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
#local_files_only=True, | |
# load_in_8bit=True, | |
torch_dtype=torch.bfloat16, | |
# use_flash_attention_2=True, | |
).to(device) | |
with open('teknium-OpenHermes-7B_September_25_2023.json', 'r') as f: | |
data = json.load(f) | |
input_messages = data['conversations'] | |
outputs = [] | |
for input_message in input_messages: | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": input_message['instruction']} | |
] | |
# pipe = pipeline(task="conversational", model=model, tokenizer=tokenizer, device_map=device) | |
# print(pipe(messages)) | |
encodeds = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | |
model_inputs = encodeds.to(device) | |
start_position = model_inputs.shape[1] | |
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.eos_token_id) | |
answer = tokenizer.decode( | |
generated_ids[:, start_position:][0], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) | |
# Remove <|im_end|> from answer | |
answer = answer[:answer.find("<|im_end|>")] | |
print("User:", input_message['instruction']) | |
print("Assistant:", answer) | |
print("-------------------------------") | |
messages.append({"role": "assistant", "content": answer}) | |
outputs.append(messages) | |
output_data = { | |
"model_name": model_name, | |
"conversations": outputs | |
} | |
with open(model_name+'.json', 'w') as f: | |
json.dump(output_data, f) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment