Skip to content

Instantly share code, notes, and snippets.

View deanjamesss's full-sized avatar

Dean McGrath deanjamesss

View GitHub Profile
1 2 3 4 5
6 7 8 9 10
import pandas as pd
# Prefix all the default column labels with column_.
df = pd.read_csv('read_csv_prefix.csv', header=None, prefix='column_')
col0 col1 col2 col3 col4 col5
1 2 3 4 5 6
import pandas as pd
# From our CSV we only want to read columns 1 & 2.
df = pd.read_csv('read_csv_usecols.csv', usecols=['col1', 'col3'])
col0 col1
Dean 70
import pandas as pd
# Cast columns 0 & 1 to name & age,
df = pd.read_csv('read_csv_names.csv', header=0, names=['name', 'age'])
import pandas as pd
df = pd.read_csv('../test_data/dummy_file.csv')
# pandas.read_csv
# Source: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv
pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None,
squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None,
true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None,
na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True,
parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False,
cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.',
lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None,
encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False,
import pandas as pd
if __name__ == '__main__':
# Create a DataFrame with dummy data.
df = pd.DataFrame(data={'staff_no': [9999] * 5,
'name': ['Dean McGrath'] * 5,
'year': [2016, 2017, 2018, 2019, 2020],
'hours': [349, 231, 876, 679, 976]})
# Pivot the DataFrame based on Staff Number & Employee Name.
# Unpivot the original DataFrame.
df = df.melt(id_vars=['staff_no', 'name'], var_name='year',
value_name='hours')