Last active
March 7, 2019 12:01
-
-
Save dear983604/83271f611055cda38f51e06e92f0a2b0 to your computer and use it in GitHub Desktop.
Using tensorflow model to realize object detection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
tensorflow model下載點 : https://github.com/tensorflow/models | |
Model : ssd_mobilenet_v1_coco_11_06_2017 | |
webcam : inner webcam (default=0) | |
python version : 3.5 in Anaconda | |
tensorflow version : 1.13 cpu | |
opencv version : 4.0 | |
os : windows 10 | |
''' | |
#導入套件 | |
import numpy as np | |
import os | |
import six.moves.urllib as urllib | |
import sys | |
import tarfile | |
import tensorflow as tf | |
import zipfile | |
from collections import defaultdict | |
from io import StringIO | |
from matplotlib import pyplot as plt | |
from PIL import Image | |
#預設0為筆電攝影機 1為USB外接攝影機 | |
import cv2 | |
cap = cv2.VideoCapture(0) | |
#範例放在object_detection資料夾,把這個資料夾添加到環境變數 | |
sys.path.append("..") | |
# ## Object detection imports | |
# 導入object_detection裡的utils套件 | |
from object_detection.utils import label_map_util | |
from object_detection.utils import visualization_utils as vis_util | |
# # 模型準備 | |
# ## Variables | |
# | |
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file. | |
# | |
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies. | |
# 網路抓下模型並解壓縮 | |
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017' | |
MODEL_FILE = MODEL_NAME + '.tar.gz' | |
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' | |
# 設定模型檢查點,此為最終使用的模型 | |
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' | |
# 取得data資料夾裡預先Label的文件資訊,資訊都存在pbtxt檔裡 | |
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') | |
# 90種分類 | |
NUM_CLASSES = 90 | |
# ## 下載模型 | |
## 可參考http://www.liujiangblog.com/course/python/63 | |
opener = urllib.request.URLopener() ##詢問網路 | |
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) ##下載模型 | |
tar_file = tarfile.open(MODEL_FILE) ##解壓縮 | |
for file in tar_file.getmembers(): ##獲取tar_file所有的訊息 | |
file_name = os.path.basename(file.name) | |
if 'frozen_inference_graph.pb' in file_name: ##如果已經有資料, | |
tar_file.extract(file, os.getcwd()) | |
# ## Load a (frozen) Tensorflow model into memory. | |
# In[6]: | |
detection_graph = tf.Graph() | |
with detection_graph.as_default(): | |
od_graph_def = tf.GraphDef() | |
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: | |
serialized_graph = fid.read() | |
od_graph_def.ParseFromString(serialized_graph) | |
tf.import_graph_def(od_graph_def, name='') | |
# ## Loading label map | |
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine | |
# In[7]: | |
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) | |
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) | |
category_index = label_map_util.create_category_index(categories) | |
# ## Helper code | |
# In[8]: | |
def load_image_into_numpy_array(image): | |
(im_width, im_height) = image.size | |
return np.array(image.getdata()).reshape( | |
(im_height, im_width, 3)).astype(np.uint8) | |
# # Detection | |
# In[9]: | |
# For the sake of simplicity we will use only 2 images: | |
# image1.jpg | |
# image2.jpg | |
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS. | |
PATH_TO_TEST_IMAGES_DIR = 'test_images' | |
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] | |
# Size, in inches, of the output images. | |
IMAGE_SIZE = (12, 8) | |
# In[10]: | |
with detection_graph.as_default(): | |
with tf.Session(graph=detection_graph) as sess: | |
while True: | |
ret, image_np = cap.read() | |
# Expand dimensions since the model expects images to have shape: [1, None, None, 3] | |
image_np_expanded = np.expand_dims(image_np, axis=0) | |
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') | |
# Each box represents a part of the image where a particular object was detected. | |
boxes = detection_graph.get_tensor_by_name('detection_boxes:0') | |
# Each score represent how level of confidence for each of the objects. | |
# Score is shown on the result image, together with the class label. | |
scores = detection_graph.get_tensor_by_name('detection_scores:0') | |
classes = detection_graph.get_tensor_by_name('detection_classes:0') | |
num_detections = detection_graph.get_tensor_by_name('num_detections:0') | |
# Actual detection. | |
(boxes, scores, classes, num_detections) = sess.run( | |
[boxes, scores, classes, num_detections], | |
feed_dict={image_tensor: image_np_expanded}) | |
# Visualization of the results of a detection. | |
vis_util.visualize_boxes_and_labels_on_image_array( | |
image_np, | |
np.squeeze(boxes), | |
np.squeeze(classes).astype(np.int32), | |
np.squeeze(scores), | |
category_index, | |
use_normalized_coordinates=True, | |
line_thickness=8) | |
cv2.imshow('object detection', cv2.resize(image_np, (800,600))) | |
if cv2.waitKey(25) & 0xFF == ord('q'): | |
cv2.destroyAllWindows() | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment