Last active
October 18, 2018 03:59
-
-
Save debboutr/bec5f22ef778e73b5d3c9592fa70da62 to your computer and use it in GitHub Desktop.
euclidean distance tool
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy as np | |
def get_index_distance(index1, index2 ) : | |
home_x, home_y = index1 | |
afar_x, afar_y = index2 | |
squares = abs(home_x-afar_x)**2 + abs(home_y-afar_y)**2 | |
return math.sqrt(squares) | |
def get_closest_index(array, index) : | |
r,c = np.nonzero(array) | |
min_idx = ((r - index[0])**2 + (c - index[1])**2).argmin() | |
return r[min_idx], c[min_idx] | |
def euclidean_distance(arr, nodata=0): | |
out = -np.ones(arr.shape) | |
finders = np.where(arr == nodata) | |
b = arr != nodata | |
for finder in zip(*finders): | |
nearest = get_closest_index(b.astype(int), finder) | |
out[finder] = get_index_distance(finder,nearest) | |
out[out<0] = 0 | |
return out | |
if __name__ == '__main__': | |
esri = np.zeros((6,6), dtype=int) | |
esri[(0,0,1),(1,2,2)] = 1 | |
esri[(5,0)] = 4 | |
euclidean_distance(esri) | |
l = np.zeros((7,7), dtype=int) | |
l[(3,3)] = 1 | |
euclidean_distance(l) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment