Created
March 9, 2017 15:02
-
-
Save decisionstats/d2cada339547d3ece8dfa6a3dff86bde to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"iris=pd.read_csv(\"http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv\",header=None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>NaN</td>\n", | |
" <td>Sepal.Length</td>\n", | |
" <td>Sepal.Width</td>\n", | |
" <td>Petal.Length</td>\n", | |
" <td>Petal.Width</td>\n", | |
" <td>Species</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>1.0</td>\n", | |
" <td>5.1</td>\n", | |
" <td>3.5</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2.0</td>\n", | |
" <td>4.9</td>\n", | |
" <td>3</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>3.0</td>\n", | |
" <td>4.7</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.3</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>4.0</td>\n", | |
" <td>4.6</td>\n", | |
" <td>3.1</td>\n", | |
" <td>1.5</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0 1 2 3 4 5\n", | |
"0 NaN Sepal.Length Sepal.Width Petal.Length Petal.Width Species\n", | |
"1 1.0 5.1 3.5 1.4 0.2 setosa\n", | |
"2 2.0 4.9 3 1.4 0.2 setosa\n", | |
"3 3.0 4.7 3.2 1.3 0.2 setosa\n", | |
"4 4.0 4.6 3.1 1.5 0.2 setosa" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"iris.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"iris2=iris.iloc[1:,1:]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>5.1</td>\n", | |
" <td>3.5</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>4.9</td>\n", | |
" <td>3</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>4.7</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.3</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>4.6</td>\n", | |
" <td>3.1</td>\n", | |
" <td>1.5</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>5</td>\n", | |
" <td>3.6</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" <td>setosa</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 1 2 3 4 5\n", | |
"1 5.1 3.5 1.4 0.2 setosa\n", | |
"2 4.9 3 1.4 0.2 setosa\n", | |
"3 4.7 3.2 1.3 0.2 setosa\n", | |
"4 4.6 3.1 1.5 0.2 setosa\n", | |
"5 5 3.6 1.4 0.2 setosa" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"iris2.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import os as os" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'C:\\\\Users\\\\Dell\\\\Documents'" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"os.getcwd()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"iris2.to_csv(\"iris2.csv\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 150 entries, 0 to 149\n", | |
"Data columns (total 6 columns):\n", | |
"Unnamed: 0 150 non-null int64\n", | |
"Sepal.Length 150 non-null float64\n", | |
"Sepal.Width 150 non-null float64\n", | |
"Petal.Length 150 non-null float64\n", | |
"Petal.Width 150 non-null float64\n", | |
"Species 150 non-null object\n", | |
"dtypes: float64(4), int64(1), object(1)\n", | |
"memory usage: 7.1+ KB\n" | |
] | |
} | |
], | |
"source": [ | |
"iris.info()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"CREATE TABLE iris (\n", | |
"Sepal_Length real,\n", | |
"Sepal_Width real,\n", | |
"Petal_Length real,\n", | |
"Petal_Width real,\n", | |
"Species varchar(20) \n", | |
");\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'C:\\\\Users\\\\Dell\\\\Documents'" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"os.getcwd()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"os.chdir('C:\\\\Users\\\\Dell\\\\Desktop')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"['.Rhistory',\n", | |
" '16508797_10155115909410362_414170078812994931_n.jpg',\n", | |
" '27032014_Duplicate_Statement.pdf',\n", | |
" '30072015_form_du-degree.pdf',\n", | |
" 'ACK.html',\n", | |
" 'ACK_files',\n", | |
" 'adult.data.txt',\n", | |
" 'AJAY.xps',\n", | |
" 'Basics of SQL & RDBMS _ Must Skills For Data Science Professionals.html',\n", | |
" 'Basics of SQL & RDBMS _ Must Skills For Data Science Professionals_files',\n", | |
" 'BigDiamonds (2).csv',\n", | |
" 'BigDiamonds.csv',\n", | |
" 'BigDiamonds.csv (2).zip',\n", | |
" 'BigDiamonds2.csv',\n", | |
" 'BLOOD REPORT.pdf',\n", | |
" 'CAM- Ajay Ohri.pdf',\n", | |
" 'cam.xps',\n", | |
" 'cam2.pdf',\n", | |
" 'cdo.jpeg',\n", | |
" 'clustersas.html',\n", | |
" 'dap class 4.R',\n", | |
" 'dap_class_4.html',\n", | |
" 'desktop.ini',\n", | |
" 'Dropbox.lnk',\n", | |
" 'dupform.pdf',\n", | |
" 'DVD.csv',\n", | |
" 'GermanCredit.csv',\n", | |
" 'Git Shell.lnk',\n", | |
" 'GitHub.appref-ms',\n", | |
" 'GoToMeeting.lnk',\n", | |
" 'groceries.csv',\n", | |
" 'Guidelines-CBSE.html',\n", | |
" 'IMS proschool',\n", | |
" 'iris2.csv',\n", | |
" 'logistic regression - script for ppt.R',\n", | |
" 'OnlineCardNSR.pdf',\n", | |
" 'PaymentForm.pdf',\n", | |
" 'Program 1-results.rtf',\n", | |
" 'Rdatasets',\n", | |
" 'Results_ Modeling and Forecasting.html',\n", | |
" 'Results_ Program 5.sas.html',\n", | |
" 'Results_ Time Series Exploration.ctk.html',\n", | |
" 'Rplot.png',\n", | |
" 'Rplot01.pdf',\n", | |
" 'Rplot02.pdf',\n", | |
" 'Rplot03.png',\n", | |
" 'rsconnect',\n", | |
" 'sas-university-edition-107140.pdf',\n", | |
" 'SQL-1.png',\n", | |
" 'sql.jpg',\n", | |
" 'sqlcheatsheet.jpg',\n", | |
" 'sqljoins_cheatsheet.png',\n", | |
" 'Sunstone - Google Docs.pdf',\n", | |
" 'test',\n", | |
" 'Trarscript_Form.pdf']" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"os.listdir()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [conda root]", | |
"language": "python", | |
"name": "conda-root-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment