Created
February 3, 2017 15:35
-
-
Save decisionstats/e283591acf4b51ba3c47e0bcfe331c05 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import psycopg2\n", | |
"import pandas as pd\n", | |
"import sqlalchemy as sa\n", | |
"import time\n", | |
"import seaborn as sns\n", | |
"import re" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"parameters = { \n", | |
" 'username': 'postgres', \n", | |
" 'password': 'root',\n", | |
" 'server': 'localhost',\n", | |
" 'database': 'ajay'\n", | |
" }\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"connection= 'postgresql://{username}:{password}@{server}:5432/{database}'.format(**parameters)\n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"postgresql://postgres:root@localhost:5432/ajay\n" | |
] | |
} | |
], | |
"source": [ | |
"# The database connection \n", | |
"print (connection)\n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"engine = sa.create_engine(connection_string, encoding=\"utf-8\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"['information_schema', 'public']\n" | |
] | |
} | |
], | |
"source": [ | |
"insp = sa.inspect(engine)\n", | |
"db_list = insp.get_schema_names()\n", | |
"print(db_list)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"['__class__',\n", | |
" '__delattr__',\n", | |
" '__dict__',\n", | |
" '__dir__',\n", | |
" '__doc__',\n", | |
" '__eq__',\n", | |
" '__format__',\n", | |
" '__ge__',\n", | |
" '__getattribute__',\n", | |
" '__gt__',\n", | |
" '__hash__',\n", | |
" '__init__',\n", | |
" '__le__',\n", | |
" '__lt__',\n", | |
" '__module__',\n", | |
" '__ne__',\n", | |
" '__new__',\n", | |
" '__reduce__',\n", | |
" '__reduce_ex__',\n", | |
" '__repr__',\n", | |
" '__setattr__',\n", | |
" '__sizeof__',\n", | |
" '__str__',\n", | |
" '__subclasshook__',\n", | |
" '__weakref__',\n", | |
" '_connection_cls',\n", | |
" '_echo',\n", | |
" '_execute_clauseelement',\n", | |
" '_execute_compiled',\n", | |
" '_execute_default',\n", | |
" '_execution_options',\n", | |
" '_has_events',\n", | |
" '_optional_conn_ctx_manager',\n", | |
" '_run_visitor',\n", | |
" '_should_log_debug',\n", | |
" '_should_log_info',\n", | |
" '_trans_ctx',\n", | |
" '_wrap_pool_connect',\n", | |
" 'begin',\n", | |
" 'connect',\n", | |
" 'contextual_connect',\n", | |
" 'create',\n", | |
" 'dialect',\n", | |
" 'dispatch',\n", | |
" 'dispose',\n", | |
" 'driver',\n", | |
" 'drop',\n", | |
" 'echo',\n", | |
" 'engine',\n", | |
" 'execute',\n", | |
" 'execution_options',\n", | |
" 'has_table',\n", | |
" 'logger',\n", | |
" 'logging_name',\n", | |
" 'name',\n", | |
" 'pool',\n", | |
" 'raw_connection',\n", | |
" 'run_callable',\n", | |
" 'scalar',\n", | |
" 'table_names',\n", | |
" 'transaction',\n", | |
" 'update_execution_options',\n", | |
" 'url']" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dir(engine)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"['sales']" | |
] | |
}, | |
"execution_count": 36, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"engine.table_names()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
" data3= pd.read_sql_query('select * from \"sales\" limit 10',con=engine)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 10 entries, 0 to 9\n", | |
"Data columns (total 4 columns):\n", | |
"customer_id 10 non-null int64\n", | |
"sales 10 non-null int64\n", | |
"date 10 non-null object\n", | |
"product_id 10 non-null int64\n", | |
"dtypes: int64(3), object(1)\n", | |
"memory usage: 400.0+ bytes\n" | |
] | |
} | |
], | |
"source": [ | |
"data3.info() " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>customer_id</th>\n", | |
" <th>sales</th>\n", | |
" <th>date</th>\n", | |
" <th>product_id</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>10001</td>\n", | |
" <td>5230</td>\n", | |
" <td>2017-02-07</td>\n", | |
" <td>524</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>10002</td>\n", | |
" <td>2781</td>\n", | |
" <td>2017-05-12</td>\n", | |
" <td>469</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>10003</td>\n", | |
" <td>2083</td>\n", | |
" <td>2016-12-18</td>\n", | |
" <td>917</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10004</td>\n", | |
" <td>214</td>\n", | |
" <td>2015-01-19</td>\n", | |
" <td>354</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>10005</td>\n", | |
" <td>9407</td>\n", | |
" <td>2016-09-26</td>\n", | |
" <td>292</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" customer_id sales date product_id\n", | |
"0 10001 5230 2017-02-07 524\n", | |
"1 10002 2781 2017-05-12 469\n", | |
"2 10003 2083 2016-12-18 917\n", | |
"3 10004 214 2015-01-19 354\n", | |
"4 10005 9407 2016-09-26 292" | |
] | |
}, | |
"execution_count": 41, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data3.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python [conda root]", | |
"language": "python", | |
"name": "conda-root-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment