Created
June 15, 2012 12:09
-
-
Save dedan/2936164 to your computer and use it in GitHub Desktop.
noise reverse correlation experiment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from matplotlib.widgets import Button | |
from scipy import signal | |
import numpy as np | |
import pylab as plt | |
image_size = 100 | |
kernel_size = 5 | |
kernel = np.ones((kernel_size, kernel_size)) | |
im = signal.convolve(np.random.random((image_size, image_size)), kernel) | |
ax = plt.subplot(121) | |
l = ax.imshow(im, cmap=plt.cm.gray, interpolation='nearest') | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.set_xlabel('noise') | |
ax = plt.subplot(122) | |
m = ax.imshow(im, cmap=plt.cm.gray, interpolation='nearest') | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.set_xlabel('average') | |
plt.subplots_adjust(bottom=0.2) | |
class Caller: | |
def __init__(self, im): | |
self.im = im | |
self.face_list = [] | |
def face(self, event): | |
self.face_list.append(self.im) | |
self.im = signal.convolve(np.random.random((image_size, image_size)), kernel) | |
l.set_data(self.im) | |
m.set_data(np.mean(np.array(self.face_list), axis=0)) | |
plt.draw() | |
def no_face(self, event): | |
self.im = signal.convolve(np.random.random((image_size, image_size)), kernel) | |
l.set_data(self.im) | |
plt.draw() | |
callback = Caller(im) | |
axprev = plt.axes([0.7, 0.05, 0.1, 0.075]) | |
axnext = plt.axes([0.81, 0.05, 0.1, 0.075]) | |
bnext = Button(axnext, 'Face') | |
bnext.on_clicked(callback.face) | |
bprev = Button(axprev, 'No Face') | |
bprev.on_clicked(callback.no_face) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment