Created
August 28, 2022 11:34
-
-
Save deedy5/093e6b9b73cda98c019eacf3e64591f4 to your computer and use it in GitHub Desktop.
Reduce pandas dataframe memory size
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def df_reduce_memory(df): | |
"""Reduce pandas dataframe memory size | |
Args: | |
df (pd.DataFrame): pandas dataframe | |
Returns: | |
pd.DataFrame: reduced pandas dataframe | |
""" | |
# Example: df = pd.read_csv(data_dir, parse_dates=True, keep_date_col=True) | |
start_mem = df.memory_usage(deep=True).sum() / 1024**2 | |
print(f"Memory usage of dataframe is {start_mem:.2f} MB") | |
for col in df.columns: | |
col_type = df[col].dtype | |
if col_type != object: | |
c_min = df[col].min() | |
c_max = df[col].max() | |
if str(col_type)[:3] == "int": | |
for int_type in (np.int8, np.int16, np.int32, np.int64): | |
if np.iinfo(int_type).min < c_min and np.iinfo(int_type).max > c_max: | |
df[col] = df[col].astype(int_type) | |
break | |
else: | |
for float_type in (np.float16, np.float32, np.float64): | |
if np.finfo(float_type).min < c_min and np.finfo(float_type).max > c_max: | |
df[col] = df[col].astype(float_type) | |
break | |
else: | |
# if column type = object. Convert to category if unique rows <= 20%. | |
if df[col].nunique() / df[col].size * 100 <= 20: | |
df[col] = df[col].astype("category") | |
end_mem = df.memory_usage(deep=True).sum() / 1024**2 | |
print(f"Memory usage after optimization is: {end_mem:.2f} MB") | |
print(f"Decreased by {100 * (start_mem - end_mem) / start_mem:.1f}%") | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment