Last active
July 25, 2019 20:18
-
-
Save deeperunderstanding/529fdb7d605ba0bbf7324f4338842d30 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
batches = 10000 | |
batch_size=64 | |
losses_disc = [] | |
losses_disc_cat = [] | |
losses_ae = [] | |
losses_val = [] | |
real = np.ones((batch_size, 1)) | |
fake = np.zeros((batch_size, 1)) | |
def discriminator_training(discriminator, real, fake): | |
def train(real_samples, fake_samples): | |
discriminator.trainable = True | |
loss_real = discriminator.train_on_batch(real_samples, real) | |
loss_fake = discriminator.train_on_batch(fake_samples, fake) | |
loss = np.add(loss_real, loss_fake) * 0.5 | |
discriminator.trainable = False | |
return loss | |
return train | |
train_prior_discriminator = discriminator_training(prior_discriminator, real, fake) | |
train_cat_discriminator = discriminator_training(cat_discriminator, real, fake) | |
pbar = tqdm(range(batches)) | |
for _ in pbar: | |
ids = np.random.randint(0, train_x.shape[0], batch_size) | |
signals = train_x[ids] | |
_, latent_fake, category_fake, _ = encoder.predict(signals) | |
latent_real = sample_normal(latent_dim, batch_size) | |
category_real = sample_categories(cat_dim, batch_size) | |
prior_loss = train_prior_discriminator(latent_real, latent_fake) | |
cat_loss = train_cat_discriminator(category_real, category_fake) | |
losses_disc.append(prior_loss) | |
losses_disc_cat.append(cat_loss) | |
encoder_loss = autoencoder.train_on_batch(signals, [signals, real, real]) | |
losses_ae.append(encoder_loss) | |
val_loss = autoencoder.test_on_batch(signals, [signals, real, real]) | |
losses_val.append(val_loss) | |
pbar.set_description("[Acc. Prior/Cat: %.2f%% / %.2f%%] [MSE train/val: %f / %f]" | |
% (100*prior_loss[1], 100*cat_loss[1], encoder_loss[1], val_loss[1])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment