Last active
July 25, 2019 20:18
-
-
Save deeperunderstanding/ccc40a7bfc86614c2aea8501f248b9bf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
window_size = train_x.shape[1] | |
input_dim = train_x.shape[2] | |
latent_dim = 32 | |
cat_dim = 8 | |
prior_discriminator = create_discriminator(latent_dim) | |
prior_discriminator.compile(loss='binary_crossentropy', | |
optimizer=Nadam(0.0002, 0.5), | |
metrics=['accuracy']) | |
prior_discriminator.trainable = False | |
cat_discriminator = create_discriminator(cat_dim) | |
cat_discriminator.compile(loss='binary_crossentropy', | |
optimizer=Nadam(0.0002, 0.5), | |
metrics=['accuracy']) | |
cat_discriminator.trainable = False | |
encoder = create_encoder(latent_dim, cat_dim, window_size, input_dim) | |
signal_in = Input(shape=(window_size, input_dim)) | |
reconstructed_signal, encoded_repr, category, _ = encoder(signal_in) | |
is_real_prior = prior_discriminator(encoded_repr) | |
is_real_cat = cat_discriminator(category) | |
autoencoder = Model(signal_in, [reconstructed_signal, is_real_prior, is_real_cat]) | |
autoencoder.compile(loss=['mse', 'binary_crossentropy', 'binary_crossentropy'], | |
loss_weights=[0.99, 0.005, 0.005], | |
optimizer=Nadam(0.0002, 0.5)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment