Skip to content

Instantly share code, notes, and snippets.

View defrindr's full-sized avatar
👋
Hi there

Defri Indra Mahardika defrindr

👋
Hi there
View GitHub Profile
-- Adminer 4.8.1 MySQL 8.0.33 dump
SET NAMES utf8;
SET time_zone = '+00:00';
SET foreign_key_checks = 0;
SET sql_mode = 'NO_AUTO_VALUE_ON_ZERO';
SET NAMES utf8mb4;
DROP TABLE IF EXISTS `email_change_tokens`;
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Document</title>
</head>
<body>
<button id="connect">Konek ke NFC</button>
<script>
<?php
class ChainableArray
{
// Provided default array
protected $defaultArray = [
['1', '2', '3', '4', '5', '6', '7', '8', '9', '0',],
['q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p',],
""" Sample TensorFlow XML-to-TFRecord converter
usage: generate_tfrecord.py [-h] [-x XML_DIR] [-l LABELS_PATH] [-o OUTPUT_PATH] [-i IMAGE_DIR] [-c CSV_PATH]
optional arguments:
-h, --help show this help message and exit
-x XML_DIR, --xml_dir XML_DIR
Path to the folder where the input .xml files are stored.
-l LABELS_PATH, --labels_path LABELS_PATH
Path to the labels (.pbtxt) file.
@defrindr
defrindr / Csv2Table.js
Created March 23, 2024 05:42
Convert CSV File to Table HTML
"use strict";
/**
* @author Defri Indra Mahardika
* @since 2024
* Converter CSV to Table HTML
*/
class Csv2Table {
_elementId = null;
_source = null;
<!-- program html, pada dasarnya harus diawali dengan <html> -->
<!-- dan diakhir dengan </html> -->
<!-- untuk merepresentasikan bahwa program yang sedang dibuat adalah program html -->
<html>
<!-- head berfungsi untuk mengatur informasi terkait halaman -->
<!-- biasanya digunakan ketika optimasi SEO -->
<!-- referensi: https://thohirdev.com/tutorial/belajar-tag-head-pada-html/#:~:text=tag%20head%20adalah%20informasi%20yang,head%3E%20sebagai%20penutup%20tag%20head. -->
<head>
<!-- memberikan judul pada tab -->
@defrindr
defrindr / DecisionTreeClassifier.php
Created March 2, 2024 07:02
DecisionTreeClassifier
<?php
namespace App\Helpers;
use Illuminate\Database\Eloquent\Collection;
class DecisionTreeClassifier
{
protected Collection $dataFrame;
protected array $predict;
{
"info": {
"_postman_id": "df44f797-e00e-45ce-a01d-8bde6431ec9e",
"name": "2023-POS-Haidar",
"schema": "https://schema.getpostman.com/json/collection/v2.1.0/collection.json",
"_exporter_id": "8432050"
},
"item": [
{
"name": "Auth",
Jumlah data = 15
TP + FP + FN = 15
Akurasi Iterasi ke-1 = 73.33333333333333
recall = 11 / (11 + 2) = 0.8461538461538461
precition = 11 / (11 + 2) = 0.8461538461538461
F-measure = 2 * (precision * recall) / (precision + recall) = 0.8461538461538461
--------------------
Jumlah data = 15
TP + FP + FN = 15
Akurasi Iterasi ke-2 = 26.666666666666668
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
import mysql.connector
# Konfigurasi koneksi ke database MySQL
config = {
'user': 'root',
'password': '',
'host': 'localhost',