Last active
March 6, 2016 13:11
-
-
Save dela3499/d9a67936fd39c0227ca3 to your computer and use it in GitHub Desktop.
Trace text with Langton ant
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
execfile('viridis.py') | |
from matplotlib.colors import ListedColormap | |
import matplotlib.pyplot as plt | |
import numpy as np | |
%matplotlib inline | |
from PIL import Image | |
def image2array(filename): | |
im = Image.open('logo.jpg') | |
return np.array(im.convert('L')) > 100 | |
def getEdgePoints(array): | |
n = array.shape[0] | |
rows = np.array(np.repeat(np.matrix(np.arange(1, n + 1)).T, n, axis = 1)) | |
cols = np.array(np.repeat(np.matrix(np.arange(1, n + 1)), n, axis = 0)) | |
horizontaledges = np.hstack([array[:,:-1] - array[:,1:], np.zeros((n,1))]) != 0 | |
verticaledges = np.hstack([(array.T[:,:-1] - array.T[:,1:]), np.zeros((n,1))]).T != 0 | |
edges = horizontaledges | verticaledges | |
rowi = rows[edges].flatten().tolist() | |
coli = cols[edges].flatten().tolist() | |
return zip(rowi, coli) | |
def updatePosition(position, direction): | |
movement = [(1,0), (0,1), (-1, 0), (0, -1)] # up, down, right, left, like a clock | |
return tuple(np.array(position) + np.array(movement[direction])) | |
# Model -> Model | |
def update(model): | |
newPosition = updatePosition(model['position'], model['direction']) | |
model['path'][newPosition] += 1 | |
x,y = newPosition | |
n = model['grid'].shape[0] | |
model['position'] = (x % (n - 1), y % (n - 1)) | |
currentValue = model['grid'][newPosition] | |
if currentValue == 0: | |
model['direction'] = (model['direction'] + 1) % 4 | |
model['grid'][newPosition] = 1 | |
else: | |
model['direction'] = (model['direction'] - 1) % 4 | |
model['grid'][newPosition] = 0 | |
return model | |
def sample(x, nSamples): | |
n = len(x) | |
return map(lambda x: x[1], sorted(zip(np.random.random(n), x), key = lambda x: x[0]))[:nSamples] | |
n = 1000 | |
offset = int(n / 2.0) | |
iters = int(3e4) #int(3e7) # Took 8 min. to compute | |
im = image2array('logo.jpg') | |
rand = np.random.random((n, n)) > 0.1 | |
mat = im & rand | |
nPoints = 1000 | |
startingPoints = sample(getEdgePoints(im), nPoints) #(np.random.random((nPoints, 2)) * 1000).astype(int).tolist() | |
paths = [] | |
for point in startingPoints: | |
initialModel = { | |
"grid": mat.copy(), | |
"position": point, | |
"direction": 0, | |
"path": np.zeros((n, n)) | |
} | |
for i in xrange(iters): | |
initialModel = update(initialModel) | |
paths.append(initialModel['path']) | |
plt.figure(figsize = (50,50)) # High resolution (takes a while) | |
plt.imshow( | |
sum(paths) - im * 10, | |
cmap = 'Greys_r', | |
interpolation = 'nearest', | |
vmax = 500) | |
plt.axis("off") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment