Created
December 10, 2022 15:29
-
-
Save deleteman/2e57a07c64d7216671e6d6dc3c47ed22 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// define a function to perform crossover between two individuals | |
const crossover = (individual1, individual2) => { | |
// choose a random crossover point | |
let point = Math.floor(Math.random() * NUM_CITIES); | |
// create the offspring by combining the two individuals | |
let offspring = individual1.slice(0, point).concat(individual2.slice(point)); | |
// return the offspring | |
return offspring; | |
}; | |
// define a function to perform mutation on an individual | |
const mutation = (individual) => { | |
// iterate over the cities in the individual | |
for (let i = 0; i < NUM_CITIES; i++) { | |
// with probability MUTATION_RATE, swap this city with another city | |
if (Math.random() < MUTATION_RATE) { | |
let j = Math.floor(Math.random() * NUM_CITIES); | |
let temp = individual[i]; | |
individual[i] = individual[j]; | |
individual[j] = temp; | |
} | |
} | |
// return the mutated individual | |
return individual; | |
}; | |
// define a function to evolve the population | |
const evolve = (population) => { | |
// select individuals for the next generation | |
let nextGeneration = selection(population); | |
// create the new generation by performing crossover and mutation | |
for (let i = 0; i < POPULATION_SIZE; i++) { | |
// with probability CROSSOVER_RATE, perform crossover | |
if (Math.random() < CROSSOVER_RATE) { | |
let individual1 = nextGeneration[i]; | |
let individual2 = nextGeneration[Math.floor(Math.random() * POPULATION_SIZE)]; | |
nextGeneration[i] = crossover(individual1, individual2); | |
} | |
// perform mutation on the individual | |
nextGeneration[i] = mutation(nextGeneration[i]); | |
} | |
// return the new generation | |
return nextGeneration; | |
}; | |
// run the genetic algorithm for a specified number of iterations | |
for (let i = 0; i < MAX_ITERATIONS; i++) { | |
population = evolve(population); | |
} | |
// sort the population by fitness | |
population.sort((a, b) => calculateFitness(a) - calculateFitness(b)); | |
// print the best individual | |
console.log(population[0]); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment