Last active
October 29, 2017 18:06
-
-
Save dengemann/511923a3044c2c0562df14f742516d1b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Authors: Denis A. Engemann <[email protected]> | |
# | |
# License: BSD (3-clause) | |
from copy import deepcopy | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import mne | |
data_path = mne.datasets.somato.data_path() | |
raw_fname = data_path + '/MEG/somato/sef_raw_sss.fif' | |
event_id, tmin, tmax = 1, -1., 3. | |
# Setup for reading the raw data | |
raw = mne.io.Raw(raw_fname, preload=True) | |
raw.filter(1, 30, method='iir') | |
baseline = (None, 0) | |
events = mne.find_events(raw, stim_channel='STI 014') | |
# picks MEG | |
picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True, stim=False) | |
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, | |
baseline=baseline, reject=dict(mag=4e-12, grad=4000e-13), | |
preload=True) | |
scalings = dict(mag=4e15, grad=1e13) | |
noise_cov = mne.cov.compute_covariance(epochs, tmax=0) | |
evoked = epochs.average() | |
picks = mne.pick_types(evoked.info, meg=True) | |
picks_mag = mne.pick_types(evoked.info, meg='mag') | |
picks_grad = mne.pick_types(evoked.info, meg='grad') | |
# Delete MAG-Grad Covariance (Xterms) | |
noise_cov_b = noise_cov.copy() | |
noise_cov_b['data'][np.ix_(picks_mag, picks_grad)] = 0.0 | |
noise_cov_b['data'][np.ix_(picks_grad, picks_mag)] = 0.0 | |
# plot | |
fig, axes = plt.subplots(2, 2, figsize=(12, 8)) | |
evoked_white = mne.cov.whiten_evoked(evoked, noise_cov, picks) | |
evoked_white.plot(picks=picks, unit=False, hline=[-2, 2], axes=axes[:, 0]) | |
evoked_white = mne.cov.whiten_evoked(evoked, noise_cov_b, picks) | |
evoked_white.plot(picks=picks, unit=False, hline=[-2, 2], axes=axes[:, 1]) | |
axes[0, 0].set_title(axes[0, 0].get_title() + ' + Xterms') | |
axes[0, 1].set_title(axes[0, 1].get_title() + ' no Xterms') | |
axes[1, 0].set_title(axes[1, 0].get_title() + ' + Xterms') | |
axes[1, 1].set_title(axes[1, 1].get_title() + ' no Xterms') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment