Created
March 28, 2013 17:26
-
-
Save denis-bz/5265158 to your computer and use it in GitHub Desktop.
a little testcase for scipy splines, random-uniform X -> linspace Y: see http://imgur.com/Z9ikNCk
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# interp1d != splev random-uniform -> 0 1 2 ... | |
# big swings, different end conditions | |
# http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html | |
# http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html | |
# http://stackoverflow.com/questions/6216881/python-interp1d-vs-univariatespline | |
# 28mar 2013 | |
from __future__ import division | |
import sys | |
import numpy as np | |
import scipy | |
from scipy.interpolate import interp1d, splrep, splev, UnivariateSpline | |
# $scipy/interpolate/fitpack.py $scipy/interpolate/fitpack2.py | |
# 2012 dec 13 Stickel splev waaay faster ? | |
print "versions: numpy %s scipy %s python %s" % ( | |
np.__version__, scipy.__version__, sys.version.split()[0] ) | |
#............................................................................... | |
nx = 11 | |
nfine = 101 | |
k = 3 | |
plot = 0 | |
seed = 0 | |
exec( "\n".join( sys.argv[1:] )) # run this.py n= ... from sh or ipython | |
np.set_printoptions( 1, threshold=100, edgeitems=10, suppress=True ) | |
np.random.seed(seed) | |
#............................................................................... | |
# random-uniform X -> linspace -- | |
X = np.r_[ 0, np.sort( np.random.uniform( size = nx - 2 )), 1 ] | |
Y = np.r_[ 0., np.arange(nx - 2), nx - 2 ] | |
xfine = np.linspace( 0, 1, nfine ) | |
if plot: | |
import pylab as pl | |
pl.title( "scipy interpolation X: random uniform, Y: 0 1 2 ..." ) | |
pl.ylim( -100, nx ) | |
pl.plot( X, Y, "o", markersize=5, markerfacecolor="none" ) | |
#............................................................................... | |
def spline( label, f ): | |
""" print / plot Y - f(X), yfine = f(xfine) """ | |
print "\n%s --" % label | |
diff = Y - f(X) | |
print "Y - f(X): min max %.1g %.1g" % (diff.min(), diff.max()) | |
yfine = f(xfine) | |
print "yfine: min %.2g %s" % (yfine.min(), yfine) | |
if plot: | |
pl.plot( xfine, yfine, label=label ) | |
#............................................................................... | |
spline( "splev", lambda x: splev( x, splrep( X, Y, k=k ))) | |
spline( "interp1d", interp1d( X, Y, kind=k )) | |
# spline( "UnivariateSpline", UnivariateSpline( X, Y, k=k, s=0 )) # == splev | |
if plot: | |
pl.legend( loc="upper left" ) | |
pl.savefig( "tmp.png", dpi=80 ) | |
pl.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment