Last active
June 19, 2019 12:42
-
-
Save denisb411/ccb470ee31d66cdaf647264fb6e20576 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import librosa.display | |
import numpy as np | |
import pandas as pd | |
import tensorflow as tf | |
df = pd.read_csv('samples_nylonGuitar_1024_Mm7_R03.csv') | |
X_load = np.array(df.iloc[:,:-1], dtype=np.float) | |
y_load = np.array(df.iloc[:,-1], dtype=np.float) | |
processedData_path = "preprocessedSamples_spect.data" | |
processedX = np.zeros((len(X_load),256,16,1), dtype=np.float) | |
processedy = np.zeros(len(y_load), dtype=np.float) | |
for i in range(len(X_load)): | |
sample = librosa.core.stft(y=X_load[i], n_fft=511, hop_length=None, win_length=256, window='hamming', center=True, dtype=np.float32, pad_mode='reflect') | |
sample = np.atleast_3d(sample) | |
processedX[i] = sample | |
processedy[i] = y_load[i] | |
print(processedX[0].shape) | |
from sklearn.utils import shuffle | |
shufled_processedX, shufled_processedy = shuffle(processedX, processedy) | |
for i in range(len(shufled_processedy)): | |
shufled_processedy[i] = (shufled_processedy[i]) - 1 | |
X_train = np.array(shufled_processedX[:-2000], dtype=np.float) | |
y_train = np.array(shufled_processedy[:-2000], dtype=np.float) | |
X_valid = np.array(shufled_processedX[-2000:-1000], dtype=np.float) | |
y_valid = np.array(shufled_processedy[-2000:-1000], dtype=np.float) | |
X_test = np.array(shufled_processedX[-1000:], dtype=np.float) | |
y_test = np.array(shufled_processedy[-1000:], dtype=np.float) | |
print(y_test[999]) | |
print(X_test[999]) | |
print(X_train.shape,y_train.shape, X_valid.shape, y_valid.shape) | |
n_outputs = len(np.unique(shufled_processedy)) | |
print(np.unique(shufled_processedy)) | |
n_outputs | |
import tensorflow as tf | |
height = 256 | |
width = 16 | |
channels = 1 | |
n_inputs = height * width | |
n_outputs = len(np.unique(processedy)) | |
with tf.name_scope("inputs"): | |
X = tf.placeholder(tf.float32, shape=[None, n_inputs], name="X") | |
X_reshaped = tf.reshape(X, shape=[-1, height, width, channels]) | |
y = tf.placeholder(tf.int32, shape=[None], name="y") | |
training = tf.placeholder_with_default(False, shape=[], name='training') | |
#input: [batch_size, 32, 3, 1] | |
#output: [batch_size, 32, 3, 32] | |
conv1_fmaps = 32 #filters | |
conv1_ksize = [32,3] | |
conv1_stride = 1 | |
conv1_pad = "SAME" | |
conv1 = tf.layers.conv2d(X_reshaped, filters=conv1_fmaps, kernel_size=conv1_ksize, | |
strides=conv1_stride, padding=conv1_pad, | |
activation=tf.nn.relu, name="conv1") | |
#input: [batch_size, 32, 3, 32] | |
#output: [batch_size, 16, 2, 32] | |
pool1_fmaps = conv1_fmaps | |
with tf.name_scope("pool1"): | |
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) | |
#input: [batch_size, 16, 2, 32] | |
#output: [batch_size, 16, 2, 64] | |
conv2_fmaps = 64 | |
conv2_ksize = [16,2] | |
conv2_stride = 1 | |
conv2_pad = "SAME" | |
conv2_dropout_rate = 0.25 | |
conv2 = tf.layers.conv2d(pool1, filters=conv2_fmaps, kernel_size=conv2_ksize, | |
strides=conv2_stride, padding=conv2_pad, | |
activation=tf.nn.relu, name="conv2") | |
#input: [batch_size, 16, 2, 64] | |
#output1: [batch_size, 8, 1, 64] | |
#output2: [batch_size, 8 * 1 * 64] | |
pool2_fmaps = conv2_fmaps | |
with tf.name_scope("pool2"): | |
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) | |
pool2_flat = tf.reshape(pool2, shape=[-1, 8 * 1 * pool2_fmaps]) | |
pool2_flat_drop = tf.layers.dropout(pool2_flat, conv2_dropout_rate, training=training) | |
n_fc1 = 512 | |
fc1_dropout_rate = 0.4 | |
with tf.name_scope("fc1"): | |
fc1 = tf.layers.dense(pool2_flat_drop, n_fc1, activation=tf.nn.relu, name="fc1") | |
fc1_drop = tf.layers.dropout(fc1, fc1_dropout_rate, training=training) | |
with tf.name_scope("output"): | |
logits = tf.layers.dense(fc1_drop, n_outputs, name="output") | |
Y_proba = tf.nn.softmax(logits, name="Y_proba") | |
with tf.name_scope("train"): | |
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y) | |
loss = tf.reduce_mean(xentropy) | |
optimizer = tf.train.AdamOptimizer() | |
training_op = optimizer.minimize(loss) | |
with tf.name_scope("eval"): | |
correct = tf.nn.in_top_k(logits, y, 1) | |
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) | |
with tf.name_scope("init_and_save"): | |
init = tf.global_variables_initializer() | |
saver = tf.train.Saver() | |
n_epochs = 1000 | |
batch_size = 40 | |
best_loss_val = np.infty | |
check_interval = 10 | |
checks_since_last_progress = 0 | |
max_checks_without_progress = 20 | |
best_model_params = None | |
with tf.Session() as sess: | |
init.run() | |
for epoch in range(n_epochs): | |
rnd_idx = np.random.permutation(len(X_train)) | |
idx = 0 | |
for rnd_indices in np.array_split(rnd_idx, len(X_train) // batch_size): | |
#for idx in range(len(X_train) // batch_size): | |
# print(idx) | |
# X_reshaped = np.reshape(X_train[idx],(1, -1)) | |
# y_reshaped = np.reshape(y_train[idx],(-1)) | |
# print(X_reshaped.shape) | |
# print(y_reshaped.shape) | |
print(len(rnd_indices)) | |
X_batch, y_batch = X_train[rnd_indices], y_train[rnd_indices].astype(int) | |
print(y_batch.shape) | |
X_batch_reshaped = np.reshape(X_batch,(len(X_batch), -1)) | |
y_batch_reshaped = np.reshape(y_batch,(-1)) | |
sess.run(training_op, feed_dict={X: X_batch_reshaped, y: y_batch_reshaped, training: True}) | |
print('ohyes') | |
if idx % check_interval == 0: | |
X_valid_reshaped = np.reshape(X_valid,(len(X_valid), -1)) | |
loss_val = loss.eval(feed_dict={X: X_valid_reshaped, | |
y: y_valid}) | |
print(loss_val) | |
if loss_val < best_loss_val: | |
best_loss_val = loss_val | |
checks_since_last_progress = 0 | |
best_model_params = get_model_params() | |
else: | |
checks_since_last_progress += 1 | |
idx += 1 | |
X_batch_reshaped = np.reshape(X_batch,(len(X_batch), -1)) | |
acc_train = accuracy.eval(feed_dict={X: X_batch_reshaped, y: y_batch}) | |
X_valid_reshaped = np.reshape(X_valid,(len(X_valid), -1)) | |
acc_val = accuracy.eval(feed_dict={X: X_valid_reshaped, | |
y: y_valid}) | |
print("Epoch {}, train accuracy: {:.4f}%, valid. accuracy: {:.4f}%, valid. best loss: {:.6f}".format( | |
epoch, acc_train * 100, acc_val * 100, best_loss_val)) | |
if checks_since_last_progress > max_checks_without_progress: | |
print("Early stopping!") | |
break | |
if best_model_params: | |
restore_model_params(best_model_params) | |
X_test_reshaped = np.reshape(X_test,(len(X_test), -1)) | |
acc_test = accuracy.eval(feed_dict={X: X_test_reshaped, | |
y: y_test}) | |
print("Final accuracy on test set:", acc_test) | |
save_path = saver.save(sess, "./my_model") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hi did your problem solve?
InvalidArgumentError (see above for traceback): logits and labels must have the same first dimension, got logits shape [1312,48] and labels shape [41]
i have the same problem