Last active
May 19, 2023 11:54
-
-
Save denisvmedia/e8979d5c1f7efd7422be54f83814cbbd to your computer and use it in GitHub Desktop.
Predicting the Missing Humidity Values
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"fmt" | |
"time" | |
"github.com/sjwhitworth/golearn/base" | |
"github.com/sjwhitworth/golearn/linear_models" | |
) | |
func mustParseDT(dtStr string) int64 { | |
layout := "2006-01-02 15:04" | |
str := dtStr | |
t, err := time.Parse(layout, str) | |
if err != nil { | |
panic(err) | |
} | |
return t.Unix() | |
} | |
func abs(n int64) int64 { | |
y := n >> 63 | |
return (n ^ y) - y | |
} | |
func checkerr(err error) { | |
if err != nil { | |
panic(err) | |
} | |
} | |
func predictMissingHumidity(startDate string, endDate string, knownTimestamps []string, humidity []float64, timestamps []string) []float64 { | |
lm := linear_models.NewLinearRegression() | |
grid := base.NewDenseInstances() | |
attrs := []base.Attribute{ | |
base.NewFloatAttribute("Temperature"), | |
base.NewFloatAttribute("Timestamp"), | |
} | |
specs := make([]base.AttributeSpec, len(attrs)) | |
// Allocate the Instances to return | |
for i, a := range attrs { | |
spec := grid.AddAttribute(a) | |
specs[i] = spec | |
} | |
checkerr(grid.Extend(len(knownTimestamps))) | |
for i, item := range humidity { | |
grid.Set(specs[0], i, base.PackFloatToBytes(item)) | |
} | |
for i, item := range knownTimestamps { | |
ts := abs(time.Unix(0, 0).Unix() - mustParseDT(item)) | |
grid.Set(specs[1], i, base.PackFloatToBytes(float64(ts))) | |
} | |
checkerr(grid.AddClassAttribute(attrs[0])) | |
checkerr(lm.Fit(grid)) | |
gridZ := base.NewStructuralCopy(grid) | |
attrsZ := gridZ.AllAttributes() | |
specsZ := base.ResolveAttributes(gridZ, attrsZ) | |
checkerr(gridZ.Extend(len(timestamps))) | |
for i, item := range timestamps { | |
ts := abs(time.Unix(0, 0).Unix() - mustParseDT(item)) | |
//gridZ.Set(specsZ[0], i, base.PackFloatToBytes(0.0)) | |
gridZ.Set(specsZ[1], i, base.PackFloatToBytes(float64(ts))) | |
} | |
predicted, err := lm.Predict(gridZ) | |
checkerr(err) | |
result := make([]float64, len(timestamps)) | |
for i := range result { | |
result[i] = base.UnpackBytesToFloat(predicted.Get(specsZ[0], i)) | |
} | |
return result | |
} | |
func main() { | |
fmt.Println(predictMissingHumidity("2013-01-01", "2013-01-01", []string{ | |
"2013-01-01 07:00", | |
"2013-01-01 08:00", | |
"2013-01-01 09:00", | |
"2013-01-01 10:00", | |
"2013-01-01 11:00", | |
"2013-01-01 12:00", | |
}, []float64{ | |
10.0, | |
11.1, | |
13.2, | |
14.8, | |
15.6, | |
16.7, | |
}, []string{ | |
"2013-01-01 13:00", | |
"2013-01-01 14:00", | |
})) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment