Created
October 29, 2017 14:56
-
-
Save denius/df23c5a4928cac8fc9e243989c7b354c to your computer and use it in GitHub Desktop.
QR decomposition by Givens rotations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
QR decomposition by givens rotations of matrix without pivoting. | |
```math | |
A = Q R | |
``` | |
Thin (reduced) method will produce `Q` and `R` in truncated form, | |
in opposite case `thin=false` Q is full, but R is still reduced, see [`qr`](@ref). | |
""" | |
@generated function qr_givens_unrolled(::Size{sA}, A::StaticMatrix{<:Any, <:Any, TA}, thin::Type) where {sA, TA} | |
mQ = nQ = mR = m = sA[1] | |
nR = n = sA[2] | |
m > n && (mR = n) | |
m > n && thin <: Type{Val{true}} && (nQ = n) | |
Q = [Symbol("Q_$(i)_$(j)") for i = 1:m, j = 1:m] | |
R = [Symbol("R_$(i)_$(j)") for i = 1:m, j = 1:n] | |
initQ = [:($(Q[i, j]) = $(i == j ? one : zero)(T)) for i = 1:m, j = 1:m] # Q .= eye(A) | |
initR = [:($(R[i, j]) = T(A[$i, $j])) for i = 1:m, j = 1:n] # R .= A | |
#for j = 1:n-1 | |
# for i = m:-1:j+1 | |
# (c, s, r) = LinAlg.givensAlgorithm(R[i-1,j], R[i,j]) | |
# # R = G'*R, Q = Q*G | |
# R[i-1,j] = r | |
# R[i ,j] = zero(T) | |
# for k = j+1:n | |
# r1 = R[i-1,k] | |
# r2 = R[i ,k] | |
# R[i-1,k] = c*r1 + s*r2 | |
# R[i ,k] = -s*r1 + c*r2 | |
# end | |
# for k = 1:m | |
# r1 = Q[k,i-1] | |
# r2 = Q[k,i] | |
# Q[k,i-1] = c*r1 + s*r2 | |
# Q[k,i] = -s*r1 + c*r2 | |
# end | |
# end | |
#end | |
code = quote end | |
for j = 1:n | |
for i = m:-1:j+1 | |
push!(code.args, :((c, s, r) = LinAlg.givensAlgorithm($(R[i-1,j]), $(R[i,j])))) | |
push!(code.args, :($(R[i-1,j]) = r)) | |
push!(code.args, :($(R[i ,j]) = zero(T))) | |
for k = j+1:n | |
push!(code.args, :(r1 = $(R[i-1,k]))) | |
push!(code.args, :(r2 = $(R[i ,k]))) | |
push!(code.args, :($(R[i-1,k]) = c*r1 + s*r2)) | |
push!(code.args, :($(R[i ,k]) = -s*r1 + c*r2)) | |
end | |
for k = 1:m | |
push!(code.args, :(r1 = $(Q[k,i-1]))) | |
push!(code.args, :(r2 = $(Q[k,i]))) | |
push!(code.args, :($(Q[k,i-1]) = c*r1 + s*r2)) | |
push!(code.args, :($(Q[k,i]) = -s*r1 + c*r2)) | |
end | |
end | |
end | |
return quote | |
@_inline_meta | |
T = promote_op(matprod, promote_type(typeof(sqrt(one(TA))),Float32), arithmetic_closure(TA)) | |
@inbounds $(Expr(:block, initQ...)) | |
@inbounds $(Expr(:block, initR...)) | |
@inbounds $code | |
@inbounds return similar_type(A, T, $(Size(mQ,nQ)))(tuple($(Q[1:mQ,1:nQ]...))), | |
similar_type(A, T, $(Size(mR,nR)))(tuple($(R[1:mR,1:nR]...))) | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment