Created
January 6, 2016 22:13
-
-
Save denmerc/630a65c51621bf6197d6 to your computer and use it in GitHub Desktop.
sample fsx
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#load "FsLab.fsx" | |
#load "Vega/Vega.fsx" | |
#load "Excel/Excel.fsx" | |
open System | |
open System.Linq | |
open Excel | |
open VegaHub | |
open FsLab | |
open Deedle | |
open FSharp.Data | |
open FSharp.Charting | |
open System | |
open System.IO | |
open VegaHub | |
open VegaHub.Grammar | |
open VegaHub.Basics | |
let datapath = __SOURCE_DIRECTORY__ + @"\data\iris.csv" | |
type Observation = { | |
SepalLength: float; | |
SepalWidth: float; | |
PetalLength: float; | |
PetalWidth: float; | |
Class: string; } | |
let data = | |
File.ReadAllLines(datapath) | |
|> fun lines -> lines.[1..] | |
|> Array.map (fun line -> line.Split(',')) | |
|> Array.map (fun line -> | |
{ SepalLength = line.[0] |> float; | |
SepalWidth = line.[1] |> float; | |
PetalLength = line.[2] |> float; | |
PetalWidth = line.[3] |> float; | |
Class = line.[4]; }) | |
let vega = | |
VegaHub.Basics.scatterplot (data |> Array.toList) | |
((fun x -> x.PetalWidth), | |
(fun x -> x.SepalLength), | |
(fun x -> x.Class), | |
(fun x -> 200.)) | |
VegaChart (50, 50, vega) | |
// Clustering Algorithm | |
// Assign each point to a Centroid | |
let assign centroids points dist = | |
points | |
|> Array.map (fun (x, c) -> | |
x, | |
centroids |> Array.minBy (fun (y, _) -> dist x y) |> snd) | |
// Compute centroids based on clusters | |
let update centroids points reduce = | |
centroids | |
|> Array.map (fun (x, c) -> | |
points | |
|> Array.filter (fun (_, i) -> i = c) | |
|> Array.map (fun (x, _) -> x) | |
|> reduce, c) | |
// recursively update | |
let clusterize (data: 'a []) dist red k (handler: ('a * int) [] -> unit)= async { | |
let centroids = [| 1 .. k |] |> Array.map (fun c -> data.[c], c) | |
let points = data |> Array.map (fun x -> x, centroids |> Array.minBy (fun (c,i) -> dist c x) |> snd) | |
let iters = 20 | |
let rec search cs ps i = async { | |
let ps' = assign cs ps dist | |
let cs' = update cs ps' red | |
handler (Array.append ps' cs') | |
do! Async.Sleep(500) | |
if i > iters && (ps |> Array.map snd) = (ps' |> Array.map snd) | |
then return cs' | |
else return! search cs' ps' (i+1) } | |
return! search centroids points 0 } | |
// End clustering | |
let distance p1 p2 = | |
(p1.SepalWidth - p2.SepalWidth) ** 2. + | |
(p1.SepalLength - p2.SepalLength) ** 2. + | |
(p1.PetalWidth - p2.PetalWidth) ** 2. + | |
(p1.PetalLength - p2.PetalLength) ** 2. | |
let reducer ps = | |
{ SepalWidth = ps |> Seq.averageBy (fun p -> p.SepalWidth); | |
SepalLength = ps |> Seq.averageBy (fun p -> p.SepalLength); | |
PetalWidth = ps |> Seq.averageBy (fun p -> p.PetalWidth); | |
PetalLength = ps |> Seq.averageBy (fun p -> p.PetalLength); | |
Class = "Centroid" } | |
let handleUpdate (update: (Observation * int) []) = | |
Basics.scatterplot | |
(update |> Array.toList) | |
((fun (x,y) -> x.PetalLength), | |
(fun (x,y) -> x.PetalWidth) , | |
(fun (x,y) -> if x.Class = "Centroid" then "C" else y |> string), | |
(fun (x,y) -> if x.Class = "Centroid" then 300. else 100.)) | |
|> Vega.Show | |
clusterize data distance reducer 3 handleUpdate | |
|> Async.Ignore | |
|> Async.Start | |
// Shorter, with Type Providers | |
open FSharp.Data | |
type dataset = CsvProvider<"data/iris.csv"> | |
type Obs = dataset.Row | |
let data2 = (new dataset()).Data |> Seq.toArray | |
VegaHub.Basics.scatterplot (data2 |> Array.toList) | |
((fun x -> x.PetalWidth |> float), | |
(fun x -> x.SepalLength |> float), | |
(fun x -> x.Class), | |
(fun x -> 200.)) | |
|> Vega.Show |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment