Last active
April 14, 2017 14:19
-
-
Save dennybritz/f37ae8b740d09b221fb103a3a04124a3 to your computer and use it in GitHub Desktop.
Tensorflow 0.9 on AWS GPU instance installation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Install build tools | |
sudo apt-get update | |
sudo apt-get install -y build-essential git python-pip libfreetype6-dev libxft-dev libncurses-dev libopenblas-dev gfortran python3-matplotlib libblas-dev liblapack-dev libatlas-base-dev python3-dev python3-pydot linux-headers-generic linux-image-extra-virtual unzip python3-numpy swig python3-pandas python-sklearn unzip python3-pip python3-venv | |
# Install CUDA 7 | |
# wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1410/x86_64/cuda-repo-ubuntu1410_7.0-28_amd64.deb | |
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1504/x86_64/cuda-repo-ubuntu1504_7.5-18_amd64.deb | |
sudo dpkg -i cuda-repo-ubuntu1504_7.5-18_amd64.deb && rm cuda-repo-ubuntu1504_7.5-18_amd64.deb | |
sudo apt-get update | |
sudo apt-get install -y cuda | |
# Install cuDNN | |
# You get the CUDNN_URL by logging into your nivida account and downloading cuDNN | |
# https://developer.nvidia.com/rdp/cudnn-archive (cudnn 7.0) | |
export CUDNN_URL="" | |
wget $CUDNN_URL -O cudnn-7.0-linux-x64-v3.0-prod.tgz | |
tar -zxf cudnn-7.0-linux-x64-v3.0-prod.tgz && rm cudnn-7.0-linux-x64-v3.0-prod.tgz | |
sudo cp ./cuda/lib64/* /usr/local/cuda/lib64/ | |
sudo cp ./cuda/include/* /usr/local/cuda/include/ | |
# Reboot for CUDA | |
sudo reboot | |
# Create virtualenv | |
pyvenv-3.4 ~/tf | |
source ~/tf/bin/activate | |
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl | |
pip install -U pip | |
pip install -U $TF_BINARY_URL | |
pip install jupyter ipython numpy pandas scikit-learn | |
# Set CUDA env vars | |
export CUDA_HOME=/usr/local/cuda | |
export CUDA_ROOT=$CUDA_HOME | |
export PATH=$PATH:$CUDA_ROOT/bin | |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_ROOT/lib64 |
does this work on a clean aws instance of Ubuntu Server 14.04?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks for sharing this. Some tweaks to get it to work for me: the latest CuDNN that I could see was cudnn-7.0-linux-x64-v4.0-prod.tgz. Also apt-get didn't have any luck finding python3-pydot, so I just removed it.